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Abstract

Our ability to accurately predict the evolution and dynamics of the atmospheric

boundary layer over steep, mountainous terrain is limited by the sparsity of exper-

imental observations and deficiencies in numerical models. The difficulties with the

latter arise primarily from insufficient grid resolution, inadequate turbulence models,

and poor representation of the rough lower boundary. In this dissertation, several

new steps towards addressing these numerical difficulties are presented for large-eddy

simulations (LES) of the atmospheric boundary layer over complex terrain.

First, a new series expansion model based on Taylor series is presented to recon-

struct the resolved subfilter-scale (SFS) turbulent stresses. Variations of this series

expansion are combined with dynamic eddy-viscosity models for the subgrid-scale

stresses to create a dynamic reconstruction model (DRM). The effect of other nu-

merical errors is also addressed in the context of explicit filtering for LES. The DRM

yields significant improvements over standard eddy-viscosity closures in simulations of

low Reynolds number turbulent channel flow. In particular, the SFS stress represen-

tation obtained with increasing reconstruction levels approaches the values predicted

by direct numerical simulations.

The DRM is then evaluated for neutral atmospheric boundary layer flow (over

flat terrain) at high Reynolds number and with bottom roughness. A near-wall stress

model is used to account for the effects of subgrid roughness elements. The agree-

ment of the mean velocity profiles with the expected logarithmic profile predicted by

similarity theory shows great improvement with the DRM over traditional turbulence

closure methods. The DRM is also validated for full-scale simulations of flow over

Askervein Hill, Scotland. Improved comparisons to field data are obtained over other

models in this complex flow with intermittent separation in the lee of the hill.

Finally, high-resolution simulations are performed for flow in the Riviera Valley
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in the Swiss Alps during the Mesoscale Alpine Programme. The steps necessary to

achieve accurate simulations with such steep, complex terrain are described. Excellent

agreement with field observations is obtained; valley wind transitions and the diurnal

temperature variations are well reproduced. The sensitivity to soil moisture, land use

data, topographic shading, and turbulence models is also determined.
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Nomenclature

Roman Symbols

a Near-wall stress model smoothing function; radius of earth; generic variable

aij SGS stress model

Aij SGS stress model at test level

Aij SGS stress tensor

Ai,j Generic function of position and time

AG Amplitude coefficient using Gaussian filter

AT Amplitude coefficient using tophat filter

b Parameter in Lambert projection; generic variable

Bij RSFS stress tensor

Bi,j Generic function of position and time

cij Resolvable Reynolds stress

C Correlation coefficient

Cc Near-wall stress model proportionality factor

Cdm Log-law drag coefficient

Cε Dynamic Wong-Lilly model coefficient

Cu Non-stationarity measure in x direction

Cv Non-stationarity measure in y direction

CS Smagorinsky coefficient

D Domain depth

ds Linear segment

dxi Differential position vector

dx Differential position vector
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dq Differential position vector in new coordinates

ex, ey, ez Base vectors in Lambert coordinates

er, eλ, eψ Base vectors in spherical coordinates

eij Filtered Reynolds stress

E Three-dimensional energy spectrum

f Coriolis parameter; generic variable

fn Coriolis parameter vector

fv Vertical Coriolis parameter

F Fourier transform operator

g Gravitational acceleration

G Filter operator√
G Determinant of transformation matrix

G Explicit filter

Ĝ Test filter

Ĝ Effective test filter

GG Gaussian filter in Fourier space, one-dimensional

GT Tophat filter in Fourier space, one-dimensional

h Terrain height; half-width of channel

hc Near-wall stress model layer height

hi Mapping factors

hx, hy, hz Mapping factors for Lambert coordinates

HG Gaussian filter, one-dimensional

HT Tophat filter, one-dimensional

Hij Tensor in dynamic Wong-Lilly computation

i Square root of -1; index in x or x1 direction

I Identity matrix

j Index in y or x2 direction

J1, J2, J3 Jacobians of transformation

k Wavenumber; TKE; index in z or x3 direction

k′ Modified wavenumber

k1, k2, k3 Wavenumbers in (x1, x2, x3) directions

KT Eddy diffusivity

l Turbulent length scale
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L,Lobu Obukhov length

Lij Leonard term stress tensor

mij RSFS stress model

Mij RSFS stress model at test level

M Number of time steps

n Parameter in Lambert projection; index

N Number of grid cells

nx, ny, nz Number of grid points in x, y, z directions

O Order of magnitude

p Fluid pressure

Pr Turbulent Prandtl number

q Specific humidity

q∗ Surface heat flux

qij Tensor in dynamic model computation

q2 Turbulent kinetic energy

Qj Turbulent heat flux

r Radial spherical coordinate

rij Tensor in dynamic model computation

R Ratio coefficient

Re Reynolds number

Reτ Turbulent Reynolds number

rgl Solar radiation dependence

rsmin Surface resistance

S Horizontal wind speed

SRS Horizontal wind speed at reference site

Sij Strain rate tensor

t Time

u Horizontal velocity in the x or x1 direction

u Velocity vector

u∗, uτ Shear or friction velocity

u′ Perturbation u-velocity

ui Unfiltered, full velocity, using Einstein notation

ui Spatially filtered velocity
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ũi Discretized velocity

ũci Discretized velocity on coarse test grid

ũi Spatially filtered and discretized velocity

ũ?i Reconstructed velocity

ũ
∗
, ṽ

∗
, w̃

∗
ũ, ṽ, w̃ multiplied by ρ∗

U Horizontal velocity magnitude

Ug Geostrophic wind in x direction

u′u′, v′v′, w′w′ Turbulence intensities

u′w′|0, uws Total turbulent surface momentum flux, same for vw

v Horizontal velocity in the y or x2 direction

Vg Geostrophic wind in y direction

Vmin Minimum velocity magnitude for log-law

w Vertical velocity in the z or x3 direction

W̃
c

Contravariant filtered and discretized vertical velocity

W̃
∗

W̃
c

multiplied by ρ∗

xj, x
′
j Position vectors

x,y Horizontal coordinates

xc, yc, zc Cartesian coordinates

y Vertical coordinate (Chapters 3 and 5)

y+ Vertical coordinate in wall units (Chapter 5)

z Vertical coordinate

zi Inversion height or boundary layer depth

z0 Roughness length

zflat Height at which σ-coordinates become flat

zref Reference height for σ-coordinates

ztop Height of domain top
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Greek Symbols

α Filter-grid ratio

αeff Effective filter-grid ratio

β Coefficient in scale-dependent dynamic model

γ Coefficient in two-part eddy viscosity model

δij Kronecker delta or identity tensor

∆ Filter width

∆̃ Grid spacing

∆ Explicit filter width

∆̂ Test filter width

∆g Grid spacing

∆f Filter width

∆DNS DNS grid spacing

∆LES LES grid spacing

∆x,∆y,∆z Filter width in (x, y, z) directions

∆x,∆y,∆z Grid spacing in (x, y, z) directions

∆+x ,∆
+
y ,∆

+
z Grid spacing in (x, y, z) directions in wall units

∆zavg Average vertical grid spacing

∆zmin Minimum vertical grid spacing

∆S Fractional speed-up ratio

∆t Time step; large time step

∆τ Small time step

∆Φ Wind direction deviation

ε Turbulent dissipation rate

εijk Permutation tensor

θ Potential temperature

θ∗ Potential temperature surface flux

κ Spherical wave number; molecular diffusivity

κm Maximum wave number

κT Turbulent scalar diffusivity

λ Longitude

λ0 Reference or true longitude
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µ Terrain-following vertical coordinate

ν Kinematic viscosity

νe,νT Eddy viscosity

ξ, η, ζ Mapped (x, y, z) coordinates

ρ Fluid density; auto-correlation

ρ0 Reference density

˘̂ρ Favre filtered and discretized density

< ρ >,< ˘̂ρ > Horizontally plane-averaged density

ρ∗ ˘̂ρ multiplied by
√
G

σ-z Terrain-following vertical coordinate system

σ∗ Global error measure

σT Turbulent Schmidt number

τ One-dimensional stress

τT One-dimensional stress model

τM1 One-dimensional stress model

τGM1 One-dimensional stress model

τij Subfilter-scale turbulent stress tensor

τSGS SGS turbulent stress tensor

τRSFS RSFS turbulent stress tensor

τResolved Resolved stress tensor

τTotal Total stress tensor

τi,near−wall Near-wall stress

φ Wind direction; generic variable

Φ Non-dimensional velocity gradient

ψ Co-latitude

Ω Coriolis vector
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Acronyms

ABL Atmospheric boundary layer

ADM Approximate deconvolution model

agl Above ground level

ARPS Advanced Regional Prediction System

asl Above sea level

B Bardina model

CBL Convective boundary layer

CET Central European time

DMM Dynamic mixed model

DNS Direct numerical simulation

DRM Dynamic reconstruction model

DRM1 - DRM10 Different levels of DRM with ADM

DRM-ADM DRM with ADM

DRM-ADM1 - DRM-ADM10 DRM with different levels of ADM

DRM-MC DRM with modified Clark model

DRM-SMAG DRM with modified Smagorinsky near wall

DSM Dynamic Smagorinsky model

DTM Dynamic two-parameter model

DWL Dynamic Wong-Lilly

ECMWF European Centre for Medium-Range Weather Forecasts

E2, E4, E6 Modified Taylor-series 2nd-6th order scalar model

FD Finite difference

FGR Filter-grid ratio

FSL Forecast Systems Laboratory

GC Constant geostrophic wind case

GR Grid ratio

GS Constant geostrophic shear case

LAI Leaf-area index

LES Large-eddy simulation

MC Modified Clark model

ML Mixed layer
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MC2 Mesoscale Compressible Community model

MM5 Mesoscale Model, Fifth Generation

MPI Message passing interface

MT4,MT6 Modified Taylor-series 4th-6th order model

NBL Neutral boundary layer

NCAR National Center for Atmospheric Research

NCDC National Climatic Data Center

NL Non-linear

NP Number of processors

NS No shear case

PBL Planetary boundary layer

RAMS Regional Atmospheric Modeling System

RANS Reynolds-averaged Navier-Stokes

rms Root-mean-square

rmse Root-mean-square error

RSFS Resolved subfilter-scale

S Smagorinsky model

SBL Stable boundary layer

SFS Subfilter-scale

SGS Subgrid-scale

SMAG Smagorinsky

SSM Scale similarity model

T4 Taylor-series 4th order model

TDM Tensor-diffusivity model

TKE Turbulent kinetic energy

USGS United States Geological Survey

USFS Unresolved subfilter-scale

UTC Universal time coordinate

WaSiM-ETH Water Flow and Balance Simulation Model,

Swiss Federal Institute of Technology
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Chapter 1

Introduction and overview

High-resolution large-eddy simulations (LES) of the atmospheric boundary layer have

recently become possible due to increases in available computational power. These

numerical simulations provide us with three-dimensional, time-dependent velocity and

scalar fields that describe physical processes in the atmosphere which can often not

be captured by relatively sparse field measurements. The performance of numerical

simulations is limited, however, by the accuracy of the equations, parameterizations,

and boundary and initial data that are used. Because atmospheric flow simulations

involve complex topography and are generally under-resolved, there are many chal-

lenges in predicting the flow correctly. Areas in which significant improvements are

needed include turbulence modeling and lower boundary conditions, particularly for

flow over terrain. The vast majority of existing large-scale numerical simulations rely

on substandard turbulence models, which can greatly compromise the accuracy of

their results. In this dissertation, new subfilter-scale (SFS) turbulence closure models

are developed and applied to simulations of the atmospheric boundary layer, with a

focus on flow over complex terrain. This chapter presents motivation for this work,

followed by an overview of the results of this research.

1
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1.1 Motivation and background

1.1.1 The need for better understanding of the atmospheric

boundary layer

The atmospheric boundary layer (ABL) is the region of the atmosphere which most

directly affects human, animal, and plant life. The ABL (also known as the planetary

boundary layer, or PBL) is the lowest portion of the troposphere, the region of the

atmosphere closest to the earth’s surface. Surface forcings affect the ABL on a time

scale of about an hour or less. The ABL varies in depth, usually extending 1-3 km

into the troposphere, though this often depends on the presence of terrain (Stull,

1988).

Understanding the physical processes that occur in the ABL is crucial for weather

and climate predictions, which have enormous economic impact. For example, one

third (∼ $3 trillion annual revenues) of the gross domestic product contributed by

private industry is thought to be affected by weather and climate (Dutton, 2002).

Insurance payments for property damage and losses due to severe weather events

(such as tornadoes, storms, floods, extreme hot or cold temperatures) amount to

billions of dollars each year (Changnon, 2003). Furthermore, agriculture and food

production, as well as transportation safety, national security, and even tourism, are

affected by the accuracy of weather prediction. Public confidence in the accuracy of

weather predictions also affects economic and personal choices.

Accurate predictions of wind and temperature fields near the earth’s surface are

also required for air quality prediction and control. A temperature inversion layer

(where temperature increases with height) can cap the ABL, preventing the rise of

eddy motions above this level, and effectively containing the air. New air is entrained

only very gradually by wind shear at the top of the inversion layer. The inversion thus

limits the dispersion of pollutants and other suspended particles and is responsible for

the formation of smog layers over urban regions, such as Los Angeles. Urban environ-

ments pose a particular challenge for prediction models because of the heterogeneity

of urban layouts; however, prediction systems in these areas are crucial for protect-

ing personal health and safety (e.g. for smog control, and to mitigate the impact
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of accidental chemical releases). Topographic features, such as buildings and moun-

tains, can significantly modify the character of the ABL, as discussed below. Robust

numerical simulation tools are clearly necessary to accommodate the variability and

complexity of atmospheric flows and provide accurate forecasts.

1.1.2 Properties of the atmospheric boundary layer

In order to numerically simulate atmospheric flows, we must be aware of the range and

significance of forcings which will influence flow in the domain of interest. The scales of

motion in the atmosphere range from molecular scales smaller than 2 mm, at which

molecular diffusion is important, to planetary scales larger than 10 000 km which

include features such as global wind systems. At intermediate levels are the microscale

(2 mm to 2 km, including eddies, plumes, and cumulus clouds), the mesoscale (2 to

2000 km, including thunderstorms and local winds), and the synoptic scale (500 -

10 000 km, including high and low pressure systems and weather fronts) (Jacobson,

1998). The range of interest for the studies described here is the mesoscale. Pielke

(1984) further defines the mesoscale as having a horizontal scale large enough to use

the hydrostatic equations, but small enough so that Coriolis terms are not very large.

The mesoscale is also classified as the meso-β scale defined by Orlanski (1975). When

vertical accelerations become important, i.e., motions are no longer hydrostatic, the

scale of motions is the meso-γ scale. This is also sometimes called the cumulus scale

and is smaller than the mesoscale defined above. On scales larger than the mesoscale,

the Coriolis effect can be as large as the pressure gradient forcing; these scales are

called regional or synoptic scales, or meso-α scales. In the studies described here,

we will be interested in meso-γ scale flows, as the influence of topography will make

vertical accelerations important.

The scales of fluid motions in the ABL also depend on the thermal stratification

in the atmosphere, which can be stable, neutral, or convective. In a stable boundary

layer (SBL), stable stratification suppresses turbulence, and vertical motions are in-

hibited. This type of boundary layer is the hardest to simulate as mixing is inhibited

and turbulent structures become finer or intermittent and hence more difficult to re-

solve. In a convective boundary layer (CBL) on the other hand, surface heating drives

large, resolvable, convective motions which mix the boundary layer thoroughly. This
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Figure 1.1: Schematic of ABL evolution throughout the day (adapted from Stull,
1988).

mixed layer (ML) grows in height during the day due to heating at the surface; in the

evening, the surface cools and a stable layer is created near the surface (see Figure

1.1). A neutral boundary layer (NBL) is one in which the temperature decrease with

increasing height exactly follows the adiabatic lapse rate, and is not as common in

the atmosphere, though near-neutral boundary layers are often observed. (See Stull

(1988) for further details on boundary layer meteorology.) In general, the ABL can

be in any of these states at different heights, thus requiring that numerical models be

able to accommodate any of these cases, as well as transitions between them. Much

of the burden often lies with the turbulence closure scheme, which is responsible for

contributing to the correct amount of mixing in the atmosphere.
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1.1.3 Effects of terrain on the atmospheric boundary layer

Predictions of ABL evolution are further complicated by the presence of complex

terrain, such as for flow through valleys or over hills. The evolution of the boundary

layer is different in a valley because of the presence of cross-valley and along-valley

winds. For example, surface heating creates anabatic (warm, up-slope) winds, while

surface cooling creates katabatic (cool, down-slope) winds. Differential heating on

valley slopes due to the orientation of each slope toward the sun can thus generate

cross-valley circulations. Along-valley flows (mountain/valley winds) are also present

due to heating/cooling effects. Flow over hills can generate lee waves, rotors, and

boundary layer separation on the lee side, depending on the speed of the winds and the

hill height. If the boundary layer separates behind the hill, there will be a turbulent

wake region, about the same size as the hill and decaying further downwind. The

height of the mixed layer (effectively the boundary layer height) can also be affected

by the presence of terrain. If the inversion height, zi is larger than the terrain or

hill height, zhill, slow background wind speeds can draw down the inversion due to

the decrease in pressure above the hill as the wind speeds up (due to the Bernoulli

principle). If winds are strong, a down-slope windstorm can occur followed by a

hydraulic jump. If zi À zhill, the hill does not have much effect on the mixed layer

depth. For zi < zhill, the air must flow around the hill as it cannot penetrate the

inversion layer (Stull, 1988). The ABL is further modified by changes in terrain

roughness; an internal boundary layer forms within the existing boundary layer as air

flows over one roughness scale to another.

1.1.4 Needed improvements for numerical simulations

Current techniques for numerical simulations of ABL flows have many deficiencies,

particularly with regard to turbulence models and lower boundary conditions. Flows

in the ABL are highly turbulent, with a Reynolds number of order 108, placing consid-

erable importance on the turbulence parameterizations used. In addition, the earth’s

surface is rough, resulting in a viscous sublayer region which is only a few millimeters

thick; this is extremely small compared to a typical boundary layer depth of a few

kilometers. The large range of scales of motion makes it next to impossible to resolve

all of the fluid motions on a discrete grid, placing considerable importance on the
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turbulence model, especially near the surface. Results are also highly dependent on

the approximate boundary conditions used at the bottom surface.

The most commonly used turbulence models for LES of atmospheric flows, the

Smagorinsky and the 1.5-order turbulent kinetic energy (TKE) eddy-viscosity models,

have several undesirable features. Eddy-viscosity models are highly dissipative, do not

allow for backscatter of energy from small scales to large scales, and do not correlate

well with direct numerical simulation (DNS) data in a priori tests. Eddy viscosity

models are also isotropic, by definition, and hence cannot account for anisotropic

effects (inhomogeneities) associated with proximity to the surface (Juneja & Brasseur,

1999). The reason for the widespread use of eddy-viscosity models, despite these

many known deficiencies, is their simplicity, and the belief that in the interior of

the flow the simulation is relatively insensitive to the SFS turbulence model chosen

(Khanna & Brasseur, 1998). This is true for the mixed layer in the atmosphere, away

from boundaries, where the energy containing scales are resolved. Near boundaries,

however, the horizontal scales of the velocity increase with height from the boundary,

hence, the filter scale (associated with the grid spacing) is larger than the turbulent

motions at the wall and the SFS model becomes critical because it must represent

the energy containing scales.

Several studies have shown that errors near the surface can propagate upward and

affect the solution in the entire boundary layer (see Juneja & Brasseur, 1999; Khanna

& Brasseur, 1998). The eddy-viscosity models spuriously couple the anisotropy of the

resolved field with that of the modeled SFS acceleration, and hence do not predict

the correct energy flux between resolved and SFS scales. Juneja & Brasseur (1999)

suggest that additional degrees of freedom are required in the SFS model. Indeed,

numerical simulations done by Cederwall & Street (1999) using improved SFS closures

(non-eddy-viscosity models) revealed turbulent motions observed in the atmosphere

that had not previously been seen in simulations.

The bottom boundary condition is another important component of ABL simu-

lations which is currently poorly represented. It is common to represent the rough

boundary using similarity laws and aerodynamic drag coefficients calculated from

empirical roughness heights. One of the most often applied similarity laws is Monin-

Obukhov theory, which uses the Obukhov length, L, and the shear velocity, u∗, to
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specify the velocity profile at the wall (Stull, 1988). The Obukhov length is propor-

tional to the height above the surface at which buoyancy production dominates shear

production of turbulence, and thus gives an indication of how convective the ABL is.

Monin-Obukhov scaling results in a mixed logarithmic and linear velocity profile de-

pending on the local stability conditions. The assumptions behind these approximate

boundary conditions do not, however, allow for simulation of the general ABL, as the

similarity profiles are not necessarily appropriate for complex flow over topography

where separation can occur and the flow is not steady.

1.2 Overview

Improved numerical models for the atmospheric boundary layer are necessary to fur-

ther our understanding of physical processes that occur in the atmosphere, partic-

ularly due to flow over complex terrain. The goal of this dissertation is to improve

several aspects of numerical simulations of the ABL, with the primary focus on de-

veloping new turbulence modeling approaches for large-eddy simulations.

We begin in Chapter 2 with a discussion of the challenges and current practices

in large-eddy simulations of the atmospheric boundary layer. We describe common

models and recent developments for turbulence closures in LES and discuss the limi-

tations and options for representing the drag at the lower rough boundary.

Chapter 3 describes the development of a new series-expansion model for the

subfilter-scale (SFS) turbulent stresses, τij. The expansion is based on recursive

substitution of Taylor series, and provides an estimate of the unfiltered velocity in

terms of the filtered velocity. The theory developed in Chapter 3 considers only the

effect of a smooth spatial filter and the approximate inversion given by the series

expansion approach. The series expansion model performs excellently in a priori test

comparisons with direct numerical simulation (DNS) data. The expansion is shown to

also satisfy the evolution equations for the exact τij to any specified order of accuracy.

The effect of the grid and discretization are not treated in this chapter, but cannot

be ignored; particularly in simulations of the ABL, a coarse grid resolution will limit

the performance of series expansion models; this is left for further investigation in

Chapter 5.
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In Chapter 4, we consider in detail other numerical errors (aside from the tur-

bulence closure question) that affect the performance of LES. Using DNS data from

stably-stratified shear flow to perform a priori tests, we examine the errors introduced

by discretization errors in the advection terms of the governing equations. These dis-

cretization and aliasing errors can often be larger than the entire turbulence forcing

term. In agreement with the results of Ghosal (1996), it is shown that the choice of

the filter width is crucial in limiting these numerical errors. The use of larger filter

widths smooths the simulated fields and makes their numerical representation more

accurate. Guidelines for determining a reasonable filter width are presented, based

on the chosen numerical discretization scheme.

Chapter 5 presents large-eddy simulations of low Reynolds number turbulent

channel flow using a new explicit filtering and reconstruction turbulence modeling

approach. In this application, the ideas presented in Chapter 3 are extended by con-

sidering the additional effects of discretization incurred in an actual simulation. The

SFS motions are further divided into resolved subfilter-scale (RSFS) and subgrid-

scale (SGS) motions. Using (two-dimensional) explicit filtering to limit numerical

errors, and series expansions (in this case based on the approximate deconvolution

approach of Stolz et al. (2001a)) for the RSFS portion, and the dynamic Smagorinsky

model for the SGS portion, we obtain improved comparisons with DNS data. In par-

ticular, the SFS stress representation obtained with increasing reconstruction levels

approaches the values predicted by the DNS. These simulations provide a challenging

test case for the reconstruction SFS modeling ideas because of the presence of solid

walls, but the size of the domain and the Reynolds number are limited to those that

can be considered by a DNS. Thus, the walls are smooth and the flow is relatively

well-resolved.

In the atmospheric boundary layer, the case is much more complicated, as the

lower boundary is rough, and the Reynolds number is many orders of magnitude

higher. Chapter 6 considers LES of the neutral atmospheric boundary layer (over

flat terrain) at large scales and with bottom roughness, thus including the challenge

of limited near-wall resolution. Similar explicit filtering (now in three dimensions)

and reconstruction ideas presented in the previous chapter are explored, and again

improved results are obtained over traditional closure models. For the RSFS compo-

nent, the Taylor series expansion models or the approximate deconvolution approach
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(Stolz et al., 2001a) are used. For the SGS component, the dynamic model of Wong &

Lilly (1994) is implemented. In addition, a near-wall stress model taken after Brown

et al. (2001) is used to account for the effects of the large grid-aspect ratio and the

stress induced by filtering near a wall with subgrid roughness elements. The agree-

ment of the mean velocity profiles with the expected logarithmic profile predicted by

similarity theory for neutral flows improves with the new hybrid RSFS/SGS/near-

wall-stress approach compared to eddy-viscosity models such as Smagorinsky. The

representation of the total SFS stresses also improves with increasing reconstruction,

as compared to the SFS stress obtained from higher-resolution simulations (DNS data

are not available at these Reynolds numbers).

Chapter 7 extends the results from the studies over flat terrain to flow over topog-

raphy. Specifically, we consider flow over Askervein Hill, an isolated hill in western

Scotland, where a field campaign was conducted under neutral stratification and

steady wind conditions (Taylor & Teunissen, 1987). This flow application provides

a more challenging test case for the turbulence models presented in this dissertation

because of the sloping terrain and separation in the lee of the hill, but still considers

somewhat ideal conditions (e.g. steady winds and uniform surface properties). To

provide a realistic turbulent inflow, a separate neutral boundary layer simulation with

periodic boundary conditions is performed and data are extracted from a slice in the

periodic domain at every time step. This turbulent dataset is then used to specify

the inflow velocity at the western entrance of the Askervein domain. Results indicate

that reconstruction and dynamic eddy-viscosity models, used together with the near-

wall stress model, significantly improve the predictions of flow speed-up over the hill

compared to the standard TKE-1.5 closure. High resolution is needed, particularly in

the vertical direction. Attempts to use increased reconstruction (greater than level 0)

over Askervein requires modification of the dynamic procedure near the wall because

of the sensitivity of the turbulent quantities in this region of the flow.

In Chapter 8, we present simulations of flow over steep, mountainous terrain in

the Riviera Valley, in the Swiss Alps. An extensive field campaign was conducted

there, providing an excellent dataset for comparison of simulation results (Rotach

et al., 2004). The Riviera Valley flow presents a challenge for any numerical model,

because of the steepness of the terrain, the high resolution necessary to resolve the

narrow valley, the heterogeneity of the surface conditions, variability in the synoptic
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forcing, and sensitivity to soil properties and solar radiation models, among other

issues. The steps necessary to achieve accurate simulations of such a complex flow

are described. Large-scale weather features are incorporated at the largest grid level

and boundary information is passed on to the next finest grid through a one-way nest-

ing scheme. High-resolution land use and soil moisture datasets, and a topographic

shading subroutine are introduced, all contributing to an improved forecast. Excel-

lent agreement with field observations is obtained; valley wind transitions and the

diurnal temperature variations are well-reproduced. The sensitivity to soil moisture,

land use data, and turbulence models is also examined at the finer resolutions. These

improved results will be useful for future studies of the distribution of pollution in

valleys, as well as for improving local weather predictions.

Chapter 9 summarizes the contributions of this work and provides recommenda-

tions for future directions for large-eddy simulations of the atmospheric boundary

layer. The appendices include some details not included in the main chapters, such

as further background, results from other simulations, and derivations of equations.

Appropriate references to sections in the appendices are given throughout.

1.3 Summary of contributions

In summary, the main contributions of this research are:

1. A Taylor-series reconstruction approach for the resolved subfilter-scale turbulent

stresses.

2. An investigation of numerical errors in large-eddy simulation.

3. A new combined reconstruction and eddy-viscosity turbulence closure approach

for explicitly filtered large-eddy simulation called the dynamic reconstruction

model (DRM).

4. Improved simulations of turbulent channel flow with smooth walls using the

DRM.

5. Improved simulations of the neutral atmospheric boundary layer over a flat

rough lower boundary using the DRM together with an enhanced near-wall

stress model for surface roughness.
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6. Validation of the DRM for flow over complex terrain and improved simulation

of flow over Askervein Hill, Scotland.

7. Validation of the DRM for flow over steep, mountainous terrain and accurate

simulations of flow in the Riviera Valley, Switzerland.



Chapter 2

Turbulence models and boundary

conditions for simulations of the

atmospheric boundary layer

We begin with a description of recent developments for subfilter-scale (SFS) turbu-

lence models for large-eddy simulation, before introducing a new model in Chapter 3.

Further details on the governing equations for LES and detailed derivations for the

SFS terms can also be found in Chapter 3. The second half of this chapter is devoted

to a discussion of boundary conditions, particularly for atmospheric flows over rough

surfaces.

2.1 SFS turbulence modeling

Large-eddy simulation employs a spatial filter to separate the small scales from the

large scales. The large eddies are explicitly calculated by prognostic equations, while

the effect of the smaller eddies must be modeled. The application of this filter (de-

noted by an overbar; e.g. a Gaussian or top-hat filter) to the incompressible Navier-

Stokes and continuity equations results in

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

,
∂ui
∂xi

= 0 , (2.1)

12
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where ui denotes the filtered velocity field for which we seek a solution, p is the

filtered pressure, and Einstein summation notation is used. The filtered product of

the velocities uiuj appearing in the advection term creates a closure problem for the

equations because the unfiltered velocity field ui is unknown. Bringing this term to

the right-hand side and rearranging, we obtain the LES equations in their traditional

form:
∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij
∂xj

(2.2)

where τij = uiuj − uiuj is defined as the subfilter-scale (SFS) turbulent stress. This

SFS term must be parameterized as a function of the filtered velocity ui to close the

equations.

The SFS motions are responsible for energy dissipation, among other processes,

and it is crucial that the SFS stress representation perform well so that the resolved

quantities (represented by ui) are predicted accurately. The difficulty in formulating

a closure model for LES is that modeling of the unresolved motions (contained in

the correlation term uiuj) must be based only on knowledge of the resolved motions

(ui). Such a requirement means that the closure model is inherently imperfect, as the

exact flow is influenced by higher-order velocity moments not present in the resolved

field.∗

There has been much success using SFS models for LES in numerous laboratory

and real-scale problems, and improvements in model performance can be expected

due to increased computing speed (which allows finer grid resolution). There remains,

however, a need for the development of improved SFS models. A study by Andren

et al. (1994) of neutral boundary layer flow concluded that differences in the numerics

of LES codes were not as significant as the difference in the SFS closure models used.

Andren et al. (1994) used four LES codes with the same closure model and obtained

relative convergence of the mean profiles. In general, the differences due to SFS

models were found to be more significant for the neutrally stratified flow tested than

for previous tests of convective flow.

The vast majority of LES studies of the ABL have used eddy-viscosity models.

∗One example of this is that in channel flow simulations, the resolved velocity profile (spatially
filtered) can become steady in time before the turbulent quantities do. Thus, a SFS model based
on the resolved velocity (first-order moment) may have difficulty modeling the turbulent quantities
accurately since higher-order moments (such as velocity correlations) are not taken into account
(Ferziger, 2000).
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Only very few ABL simulations have been performed using non-eddy-viscosity models

(see Chapter 6 for further details), even though these models have been shown to give

much-improved results and are not harder to implement.

2.1.1 Eddy viscosity models

The first SFS models mimicked the Reynolds-averaged Navier-Stokes (RANS) clo-

sure idea of an eddy-viscosity or gradient-transport model, setting τij = −2νTSij,
where Sij = 1

2
( ∂ui

∂xj
+ ∂uj

∂xi
). A constant eddy viscosity, νT , can be chosen but this

gives very poor results. Smagorinsky (1963) introduced a model of the form νT =

(CS∆g)
2(SijSij)

1/2 where ∆g is the grid spacing, and the Smagorinsky coefficient CS

must be adjusted to give the best results. In this model the length scales are based on

the grid size, which determines the eddy motions resolved in the LES. The Smagorin-

sky model is still widely used and is the basis for the popular dynamic Smagorinsky

model described later.

Closures using a prognostic equation for the turbulent kinetic energy (TKE) are

also common in atmospheric boundary layer simulations. These 1.5-order TKE clo-

sures (see e.g. Deardorff, 1980; Moeng, 1984) are similar to RANS approaches such

as k-ε or q2-q2l approaches (see Yamada & Mellor, 1975; Stull, 1988; Blumberg et al.,

1992). The eddy viscosity is represented as a function of a velocity scale and a length

scale. The TKE equation (q2 or k) is solved to obtain a representative velocity scale.

In RANS closures, the length scale (l) is derived using another prognostic equation,

such as for dissipation (ε) or q2l. The TKE and length scale equations involve numer-

ous parameterizations for unclosed correlations and include several coefficients which

are tuned to experimental data. When a TKE approach is used in LES applications,

the velocity scale used in the eddy viscosity is again based on solution of the TKE

equation; however, instead of solving an additional prognostic equation for the length

scale, the 1.5-order TKE models use the grid spacing (∆g) as the basis for determining

the length scale.

The continued improvement in grid resolution due to the increase in computer

power has begun to diminish the distinction between RANS and LES approaches.

While RANS is strictly based on time averaging, using a smaller time period for the

average is akin to using a smaller filter width for the spatial average in LES. The LES
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approach is, however, ultimately tied to the definition of the filter width. In numerical

codes which use eddy-viscosity closures, the distinction can be made by the choice of

the representative length scale. LES codes use a 1.5-order TKE method instead of

k-ε or other higher-order models, and select the 1.5-order length scale based on the

filter width.

Eddy viscosity models perform reasonably well in predicting mean flows away

from boundaries, but often overpredict shear stress and do not allow the flow to re-

laminarize because they require the SFS stress to be aligned with the resolved strain

rate tensor. Eddy viscosity models exhibit very low correlations in a priori tests (see

Section 3.4), meaning that there is little correlation between the modeled and actual

SFS stresses. These models are also entirely dissipative; energy transfer is always from

the large to the small scales. This is most often the case in real turbulent flows, but

backscatter of energy from small to large scales can be significant as well (Sullivan

et al., 2003). Various other eddy-viscosity models have been proposed, some with

nonlinear dependence on the resolved strain rate, S ij (see e.g. Kosović, 1997); a few

are discussed further in Chapter 6.

2.1.2 Scale-similarity models

Due to the limited success of eddy-viscosity closures, a new approach was sought.

The first scale-similarity model was introduced by Bardina et al. (1983) and was

based on the hypothesis that the largest SFS scale and the smallest resolved scale

are similar. The Bardina model makes the approximation ui = ui (i.e., that the full

velocity is equal to the filtered velocity) to close the SFS stress term, resulting in

τij ≈ uiuj−uiuj. This model exhibits relatively high correlations with the exact SFS

stress computed in a priori tests (see Section 3.4). It allows backscatter of energy

from the small to the large scales, making it a desirable component of any SFS model.

The scale-similarity model also has correct near-wall behavior (Sarghini et al., 1999)

and is Galilean invariant (Speziale, 1985). The model does not dissipate enough

energy, however. Thus, Bardina et al. (1983) also introduced the mixed model, which

combined the Smagorinsky and the scale-similarity model. This gave much improved

correlations while allowing for adequate dissipation. Velocity estimation methods,

described below, use scale-similar form as well.
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The importance of the scale-similarity term may be seen in the study of four

different LES codes by Andren et al. (1994) which confirmed that the challenge for

eddy-viscosity models has long been to obtain the correct logarithmic velocity profile

near the wall. Traditional simulations result in excessive shear at the wall and hence

incorrectly predict the velocity profile. Using a stochastic backscatter model (i.e. the

model of Mason & Thomson (1992) tested by Andren et al. (1994)) seemed to improve

results near the wall. As scale-similar models allow for backscatter, it is expected that

these will greatly improve the flow profile in the ABL, without introducing the random

(and non-physically based) fluctuations of the stochastic model, as seen in Chapter 6.

2.1.3 Dynamic models

The next development in SFS modeling was the introduction of eddy viscosity models

which allow the coefficient to vary in space and time dynamically, without the use of

prognostic equations or predetermined coefficients. The first such model was devel-

oped by Germano et al. (1991) and was applied to the Smagorinsky eddy-viscosity

model, which became known as the dynamic Smagorinsky model (DSM). It is based

on the assumption that the same Smagorinsky coefficient can be applied at the given

filter width and at the test filter level (usually twice the original filter width). Fluc-

tuations in the dynamic Smagorinsky coefficient allow positive and negative energy

transfer which simulates the forward- and backscatter of energy between large and

small scales. However, large fluctuations in the coefficient are often observed, which

lead to instabilities. To overcome this problem, averaging of the dynamic constant is

applied over planar cross-sections which means that back-scatter or forward-scatter

must occur uniformly over that entire plane. Newer formulations allow local averaging

which restores some of the spatial variability to the model (Ghosal et al., 1995).

Zang (1993) extended this idea of dynamic coefficients to the mixed model (Bar-

dina et al., 1983) and created the dynamic mixed model (DMM). This incorporated

the scale-similarity term which is capable of accounting for backscatter on its own,

thus greatly decreasing the required contribution of the eddy-viscosity component.

The dynamic coefficient does not fluctuate as much as in the DSM; hence local aver-

aging is adequate to smooth the fluctuations.

Another variation of the dynamic model is the dynamic two-parameter model
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(DTM) which introduces independent coefficients in front of both the scale-similarity

and eddy-viscosity parts of the mixed model (Salvetti & Banerjee, 1995). This model

exhibits results comparable to the DMM model. Further variations of dynamic mod-

els have been developed, such as those of Vreman et al. (1996) and Cederwall &

Street (1999). While dynamic models are considered the state-of-the-art, their dis-

advantage is that they require increased computational time as two levels of filtering

must be employed, as well as averaging of the dynamic coefficient. The performance

of dynamic models over a rough wall is a topic of current study (see Chapter 6 and

references therein).

2.1.4 Velocity reconstruction models

The latest developments in SFS modeling have focused on estimating the unfiltered

velocity directly, as opposed to modeling the SFS stress terms. Thus, rather than

assuming a form such as a gradient-diffusion model for the stress tensor itself, the

challenge becomes one of expressing the unfiltered velocity as a function of the filtered

velocity, i.e., ui = f(ui). This is an inverse filter operation, or reconstruction of the

unfiltered velocity from the filtered velocity. The use of the velocity approximation

or reconstruction in the calculation of the SFS stress leads to models of the scale-

similarity type. Indeed, the scale-similarity model of Bardina et al. (1983) can be

classified in this category, as it estimates ui ≈ ui; this approximation can be improved,

as discussed below, with higher-order models that reduce to the standard Bardina

scale-similarity case at lowest order.

One of the first velocity reconstruction models was presented by Shah & Ferziger

(1995). They developed the stimulated small-scale, or S3, model in which a local

approximation of total quantities in terms of filtered ones is introduced. The series

expansion model in Chapter 3 is a simplified version of this method. Shah’s model

gave better results for turbulent channel flow LES than simulations using the DTM

(Shah, 1997), demonstrating that velocity estimation models can give results compa-

rable to dynamic models, at least in low-Reynolds number flows.

Domaradzki & Saiki (1997) and Domaradzki & Loh (1999) developed a velocity

estimation model which uses an approximate deconvolution to obtain the estimated

velocity in terms of the filtered velocity. The estimated velocity is determined using
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a single nonlinear interaction per time step on a grid two times finer than the LES

grid; this nonlinear interaction includes a tunable parameter and is introduced to

mimic the behavior of the nonlinear SFS terms (where nonlinear interactions occur

continuously). This procedure introduces smaller scales which “refine” the estimate

of the unfiltered velocity. (The use of this nonlinear step makes this approach strictly

speaking an SGS rather than an RSFS model - see Domaradzki & Adams (2002) and

the discussion in Chapters 5 and 6.) Mean profiles for a channel flow show excellent

agreement with DNS data for low Reynolds number cases; higher Reynolds number

results show some deviation of the LES results from the DNS case.

Geurts (1997) presented an inverse filtering operation, which can be used for filters

which have compact support, to approximate the unresolved velocity field, ui. The

Fourier transform of the tophat filter has infinitely many roots, so there is no exact

inverse (as this would require division by zero at certain points in wave space). An

approximate inverse is found by requiring that polynomials of a certain degree are

recovered exactly after filtering and inversion, which gives a linear system of equations

for the coefficients of the inversion operation. Using the approximate inverse, a model

for the SFS stress is constructed as a generalized similarity model. Increasing the

order of the polynomial expansion gives a more accurate representation for τij.

Stolz & Adams (1999) used a similar inverse filtering idea with the iterative

method of van Cittert (1931) for their approximate deconvolution method (ADM).

The unfiltered velocity is approximated by a truncated series expansion of the in-

verse filter operator. As with Geurts (1997), the deconvolved velocities are used to

compute the nonlinear terms in the momentum equations. Stolz & Adams (1999)

observe correlations for this model in a priori tests that are greater than 0.95. They

do not perform filtering in the vertical direction. Stolz et al. (1999b) introduce a

relaxation term into their prognostic equation for the velocity, which acts as an SGS

model to supplement the scale-similarity portion of the SFS stress (see Chapters 5

and 6). This is similar to the entropy dissipation term added by (Adams, 1999) in the

application of the ADM to compressible flows with shocks. As used with a secondary

filter operation, the relaxation term ensures sufficient energy dissipation (Pruett &

Adams, 2000). Stolz et al. (1999b) find that the relaxation term is needed to produce

good results, but disappears as the inverse filtering operation becomes more exact.

Velocity reconstruction methods have shown remarkable success since their recent
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introduction. Those that perform best, however, require the use of ad hoc coeffi-

cients or terms. For example, the method of Domaradzki & Saiki (1997) requires

an adjustable parameter for the forced nonlinear interaction terms which generate

smaller scales. The method of Stolz & Adams (1999) requires a relaxation term in

the dynamic equations to obtain satisfactory agreement. The need for these dissipa-

tive terms suggests the use of a two-part closure model: velocity reconstruction plus

dissipation. The Taylor series expansion approach introduced in Chapter 3 consid-

ers only the velocity reconstruction contribution. The need for a dissipative term is

described further in Chapters 5 and 6.

2.2 Boundary conditions

The only physical boundary condition in ABL simulations is at the bottom. Lateral

and top boundary conditions are required because the computational domain is finite,

so we must impose conditions on the flow at these boundaries that are as physically

realistic as possible. The bottom boundary, however, also poses problems because the

earth’s surface is rough; the effects of trees, buildings, and other structures, cannot

be resolved and are instead treated as subgrid roughness by using so-called “wall

models”. The term “wall model” is used loosely to describe models used to represent

drag at any “wall”, including the earth’s surface. The remainder of this chapter

describes typical implementations of boundary conditions in ABL simulations and

recent efforts to improve wall models in LES. Many of the detailed descriptions apply

to the Advanced Regional Prediction System (ARPS), a mesoscale meteorological

LES code described and used later in Chapters 6-8.

2.2.1 Lateral and top boundary conditions

The top of the mixed layer is often used as the upper boundary in small-scale simula-

tions of the ABL. A rigid, free-slip lid is imposed, assuming there is little flux across

the inversion layer at the top. Flow over topography requires more sophisticated

boundary conditions, as the reflection of topographically-generated waves is not de-

sired at the non-physical boundaries. The top boundary is often placed much further

away from the surface. Another option is to impose radiation boundary conditions;
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these are artificial conditions that allow waves to pass undisturbed across the bound-

ary and out of the domain (Klemp & Durran, 1983). The exact radiation boundary

condition is expensive to implement numerically since it requires time integration and

hence storage of a time sequence of data. When some terms are neglected, integra-

tion can be avoided; this approximate method gives good results except for large scale

Rossby waves. A Rayleigh damping layer is another alternative for the upper bound-

ary, introducing damping in the upper region of the domain so that waves entering

this region die out and are not reflected by the rigid lid. These damping layers are

effective but computationally inefficient since as much as half of the computational

domain must be used (Klemp & Durran, 1983). For flow over a 2-D mountain, re-

sults are the same with radiation boundary conditions as with Rayleigh damping, but

much less computation time and storage are required (Klemp & Durran, 1983). The

radiation boundary condition has been applied to 3-D atmospheric flows as well (such

as with ARPS), where good results and comparable savings to the 2-D case can be

achieved.

At the lateral boundaries, the inflow velocities, velocity gradients, open radia-

tion conditions, or periodicity can be prescribed. To simulate real events in the

atmosphere, time-dependent boundary conditions imposed by a larger, coarser-scale

model must be used in a grid nesting approach. Results from the coarse simulations

are then interpolated to a finer grid and lateral boundary conditions are provided at

the edges of the fine domain throughout the duration of the simulation. One-way

nesting passes information from the coarse to the fine grid. Two-way nesting allows

the fine grid to feed information back into the coarser grid, which can be challenging

over complex terrain. Warner et al. (1997) provide guidelines for lateral boundary

conditions for flows including complex terrain. An application of one-way nesting

over complex terrain using ARPS is given in Chapter 8. Other real-time forecasting

applications using grid nesting with ARPS are described in Appendix C.

2.2.2 Bottom boundary conditions

Ironically, the one physical boundary condition in the problem, i.e., the earth’s sur-

face, poses a more difficult problem than either the lateral or top boundary conditions.

Because the surface beneath the atmospheric boundary layer is rough and the flow
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highly turbulent, it is impractical (and currently impossible) to resolve all of the

scales of fluid motion and apply a no-slip condition for the velocity at the surface be-

cause of grid resolution limitations. Traditionally, atmospheric models use similarity

or log-law approximate boundary conditions to parameterize the effect of the bottom

roughness on the flow. The following subsections discuss typical bottom boundary

conditions for the ABL, describe the effects of the wall grid resolution and aspect ratio

on the flow solution, and summarize recent attempts at creating new wall models.

Flux boundary conditions in ABL simulations

The most frequently-used bottom boundary conditions in ABL simulations are based

on similarity theory, which empirically relates dimensionless groups in the boundary

layer. Important parameters in the surface layer are the height of roughness elements,

the mean wind velocity, and the height above the surface. The roughness elements

determine the drag generated at the bottom surface. The parameter known as the

aerodynamic roughness length, z0, can be determined by wind measurements at dif-

ferent elevations and application of a similarity profile (for neutral cases, this reduces

to a logarithmic profile). The parameter z0 is the height at which the wind speed goes

to zero and is less than the height of the physical roughness elements. From these

variables, dimensionless relations can be formed, after which a functional relationship

can be determined. These parameterizations are based on flat boundary layer flows,

and are not generally valid over complex terrain.

Surface flux models for heat, momentum, and moisture are based on the local

stability and roughness length. In ARPS, the models are based on the formulation

of Businger et al. (1971). For the vertical momentum flux (u′w′) associated with the

x-direction, the formulation is

u′w′|0 = Cdmmax (V, Vmin)u (2.3)

where u is the velocity (in the x-direction) at the lowest grid level, and V is the wind

magnitude at that level. Vmin (set to 0.1 m/s) is included to prevent the shear from

going to zero in cases where there is no mean wind, as it is unlikely that surface flux

on the rough bottom is zero everywhere over a grid area even if the mean (resolved)

wind happens to be zero. Similar parameterizations are used for the heat and moisture
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fluxes. The drag coefficient Cdm is either prescribed or computed based on further

parameterizations. The parameterization used depends on the stability of the flow;

different formulations are used for stable, neutral, and unstable conditions. The ARPS

code uses models by Byun (1990) for unstable and neutral cases, and by Deardorff

(1972) for free convection and stable flows.

Effect of near-wall grid resolution on SFS motions

The approximate boundary conditions provided by similarity theory and drag laws

perform well in some situations and give computational savings as the motions near

the wall do not have to be resolved; however, the effect of the low near-wall resolution

on turbulence parameterizations and hence on the entire flow field solution is unclear.

Errors in the near-surface velocity fields can induce errors in the development of the

boundary layer and hence in the transport of scalars.

Traditional closure models ignore the change in turbulence characteristics that

occurs in the near-wall region. The Smagorinsky model has been used extensively in

the ABL because LES is relatively insensitive to the SFS closure away from the surface

where most of the motions are resolved. However, near-ground small-scales cannot be

resolved by LES, because horizontal velocity components scale with distance above the

surface and the grid is too coarse to resolve the flow. Juneja & Brasseur (1999) argue

that eddy-viscosity models create errors in velocity and temperature because of an

over-prediction of mean shear near the ground; these errors are then carried vertically

by buoyancy driven fluxes to contaminate the entire ABL calculation. Juneja &

Brasseur (1999) suggest that the over-prediction of mean shear is due to a spurious

feedback loop from the coupling of the resolved field with that of the modeled SFS

acceleration. The random fluctuations introduced in the stochastic SFS model of

Mason & Thomson (1992) break the feedback loop and hence yield improved results

over the standard eddy-viscosity models. Thus, a two-component model which also

allows for energy backscatter (i.e. using velocity estimation with an eddy-viscosity

model), should perform better near the wall and diminish the impact of the coarse

resolution. In Chapter 6, we examine the performance of various turbulence closures

with coarse resolution near the surface.
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Effect of grid aspect ratio at the bottom boundary

ABL simulations often employ a terrain-following coordinate system. The σ-z coor-

dinates used by ARPS are defined as

µ = (zflat − zref )
z − h
zflat − h

+ zref for zref ≤ z ≤ zflat , (2.4)

where z is the physical height, zref is a reference height at the bottom of the domain,

h is the height of the terrain, and D is the depth of the domain. Above zflat, the

physical height is used to minimize distortion of the grid, i.e.,

µ = z for zflat < z ≤ D + zref . (2.5)

The range of the mapped grid variable is thus from zref at the lower boundary to

zflat. In addition to mapping, the grid can be stretched by cubic or hyperbolic tangent

functions, which can be combined piece-wise with sections of non-stretched grid (Xue

et al., 1995).

Terrain-following coordinates are best for terrain with slopes much less than 45◦, as

calculation of horizontal gradients becomes inaccurate when the physical coordinate

lines are too steep Pielke (1984). The terrain slope limitation is also necessary for the

hydrostatic assumption to hold in the transformed coordinates; however, this is not

an issue in ARPS, as it is non-hydrostatic. When the terrain slopes are steep, large

roundoff errors arise when calculation of the pressure gradient involves differences

between large terms. ARPS alleviates this problem somewhat by first subtracting

the horizontally averaged base-state variables, so that pressure gradient calculation

errors are reduced (Xue et al., 2000).

While fine grid resolution is desired for turbulence modeling, the choice of the

aspect ratio of the grid near the surface can affect the accuracy of the solution and

is important for parameterizing flux conditions at the surface. In traditional LES

applications (e.g. low Reynolds number channel flows), the grid aspect ratio ∆x/∆z

is usually about 3; however, much higher ratios have been used in laboratory-scale

simulations with success (Cui, 1999; Zang et al., 1993). In ABL applications, this

aspect ratio is much larger, i.e., the horizontal resolution is much coarser because of

the larger domain sizes. The grid aspect ratio affects the size of eddies which are
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resolved in the flow; even if the flow is well-resolved in the vertical, the eddy size may

be limited by the horizontal grid size (Kaltenbach, 1998). The study by Kravchenko

et al. (1996) using zonal embedded grids indicates that having a small grid aspect ratio

near a wall helps to produce excellent results in LES. Lund & Kaltenbach (1995) also

found that refining the grid in the wall-normal direction produced little improvement

in flow statistics unless the horizontal directions were refined as well. They explain

that refining the grid in the vertical direction is more efficient in obtaining a rough

prediction of the mean velocity profile, while correctly predicting the finer details

of the profile seems to require reduction of numerical errors (e.g. by using explicit

filtering, see Chapter 5).

In contrast, Wyngaard et al. (1998) argue that the surface-exchange coefficients

commonly used to parameterize surface fluxes are a good representation only if the

grid at the surface has a large aspect ratio. Thus, for what they call a traditional

LES with small aspect ratio, the coefficients would no longer represent an averaged

effect; they would have too many fluctuations, which would affect the resolvable scale

motions. The exchange coefficients are well established for ensemble-averaged fluxes.

For a small grid aspect ratio, however, the authors argue that it may be better to

treat the coefficient as a fluctuating variable. As the grid aspect ratio increases, the

fluctuating values of the exchange coefficients should approach the ensemble-averaged

quantities. Wyngaard et al. (1998) wrote conservation equations for the coefficients

to model the fluctuations, but did not see much improvement in the results, as they

found that the SFS closure scheme was inadequate near the surface where there is

inadequate grid resolution. The Smagorinsky model in particular performed very

poorly, as shown in their a priori tests.

The velocity estimation model presented in Chapter 3, as well as the other re-

construction approaches used in Chapters 5-8 are anisotropic, and can accommodate

non-uniform grids, which are features shown to be very important near solid bound-

aries. The effects of grid resolution on the simulation results are investigated in all

of the flow applications in this work. The performance of the turbulence models with

different grid aspect ratios is evaluated in Chapter 6. For the high grid resolution

and low aspect ratio case which resolves eddy motions, it may be necessary to use

fluctuating surface-flux coefficients (as done by Wyngaard et al., 1998); however, a

method for their estimation is left to future work.
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New attempts at wall-models for LES

Several recent studies using approximate boundary conditions on smooth walls have

illustrated the difficulty of the wall modeling problem and provide direction for fur-

ther research with rough walls, which pose additional challenges. Baggett et al. (1997)

estimate that to fully resolve a smooth boundary layer, the number of grid points for

LES has to scale with the Reynolds number, which can become very computationally

expensive. Approximate boundary conditions allow more efficient computations be-

cause they do not fully resolve the near-wall flow yet attempt to incorporate the wall

effects on the outer flow. The outer flow does not scale with the Reynolds number, so

considerable savings could be achieved. Unfortunately, there has been limited success

with this approach, even for smooth walls. When wall-stress models are used with

coarse grids, the near-wall points are poorly predicted; the flow is too fast relative to

the outer flow, and hence the skin friction is overpredicted (for a given mass flow).

Using a coarse grid also means that the effect of the SFS model becomes even more

important, as a larger fraction of the SFS motions must be captured by the closure

model. Similar issues exist for wall-models applied to rough walls.

The review article of Piomelli & Balaras (2002) summarizes the inadequacy of the

current state-of-the-art models even for simplified geometries. For example, in their

tests over smooth walls, Cabot & Moin (2000) found little difference in results from

an instantaneous log-law model, full thin boundary layer equations near the wall,

or a shifted log-law model. Cabot et al. (1999) conclude that the first few points

near the wall may never be well-predicted using such wall models. Other studies

include those of Wang & Moin (2002), who developed a dynamic wall model using

the thin boundary layer equations, Kaltenbach (2003), who performed a priori tests to

evaluate wall models for separated flows, and the suboptimal control theory approach

of Nicoud et al. (2001), all of which had limited success.

Another wall-model option is to couple RANS and LES models, with RANS used

in the coarse near-wall grid region and adjusted to match the LES result further

from the wall (Baggett, 1998; Cabot, 1995; Kaltenbach, 1998). These hybrid RANS-

LES studies are for smooth walls; over a rough wall, the RANS portion would again

require a wall model to set the bottom boundary condition. Artificially increasing the

eddy viscosity near the wall is another approach, which moves the resolved velocity
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profile closer to the log profile. Recently, Ding (2002) and Zedler (2002) have added

an artificial eddy viscosity based on the work of Davies (1972) for simulation of a

turbulent channel flow. The increased eddy viscosity near the wall helps to adjust

the mean velocity profile, which is usually too large in LES of channel flows, but this

model is ad hoc and may not have general applicability.

Even for smooth walls, wall-models have had very limited success. Instantaneous

log laws, which specify that the resolved velocity profile is always a log law, even in

reverse-flow (separated) regions, have shown results as reasonable as any others and

are the simplest to implement (Cabot &Moin, 2000). Whether the log-law assumption

is physically realistic in complex-terrain flows is questionable. The fundamental flaw

is the necessary assumption of a mean velocity profile, which is not applicable to

general flow situations. ABL simulations have the further challenge of a coarse wall

which cannot be resolved at all, hence absolutely requiring the use of wall models.

Several modifications have been proposed for wall models for ABL flow. For instance,

Sullivan et al. (1994) found that adjusting the flow at the first few grid points so that

the mean shear matches the profile from similarity theory improves results. Brown

et al. (2001) adapted a canopy model used for flow through vegetation to improve the

representation of wall-induced stresses on the flow. These developments for the ABL

are discussed further in Chapter 6.



Chapter 3

Subfilter-scale models for LES

using Taylor series∗

A new subfilter-scale (SFS) stress model for large-eddy simulation (LES) is proposed

using successive inversion of a Taylor series expansion to represent the unknown full

velocity in terms of the filtered velocity. The resulting expression for the SFS stress

satisfies the SFS stress evolution equations to a predefined order of accuracy in the

filter width (the truncation order of the series expansion). The modeled SFS stress

is thus influenced by buoyancy, viscous, pressure, and Coriolis effects just as the

velocity field is. The series expansion model is of scale-similarity form, and reduces

to the Bardina model (Bardina et al., 1983) at lowest order. Preliminary tests of

the model are presented using a modified wave number analysis and a priori testing

using a direct numerical simulation (DNS) of sheared, stably-stratified homogeneous

turbulence. The model exhibits very high correlations with the exact SFS stress.

This chapter does not consider the effects of discretization, which are discussed in

Chapters 5 and 6.

∗This chapter is a reproduction (with minor modifications) of Technical Report 2000-K1 from
the Environmental Fluid Mechanics Laboratory, Stanford University, entitled “A theory for the
subfilter-scale model in large-eddy simulation” by Fotini Katopodes (the principal author), Robert
L. Street, and Joel H. Ferziger (Katopodes et al., 2000b).

27
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3.1 Introduction

Large-eddy simulation is a method in which the larger scales of a turbulent flow

are simulated accurately, while the smaller, subfilter, scales are not resolved in the

numerical simulation and must be modeled. (We use the term “subfilter-scale”, rather

than “subgrid-scale”, to denote the unresolved velocity and stress fields, as the size of

the filter should be greater than the size of the grid upon which spatial discretization

is based (Ghosal, 1996).) The subfilter-scale model must be based on knowledge of the

resolved scale behavior alone. Leonard (1974) provided early theoretical and practical

bases for LES. Bardina et al. (1983) made a seminal contribution by introducing the

scale-similarity model, which has been shown to be an essential component of a correct

SFS model. While eddy-viscosity models such as that used by Smagorinsky (1963)

assume a form for the SFS stress, scale-similarity models create an approximation

to the full velocity field and use this to estimate the SFS stress, τij = uiuj − uiuj.
Thus, in the Bardina model, the full velocity is approximated by the filtered velocity,

ui ≈ ui, to obtain τij ≈ uiuj − uiuj. This was the first SFS model that used the

smallest resolved scales as its basis.

Further improvement in estimates of the SFS stress were seen with the introduc-

tion of dynamic models. Zang et al. (1993) introduced a two-component model based

on Bardina’s mixed model (Bardina et al., 1983) and the dynamic model of Germano

et al. (1991). Mixed models can represent both back-scatter of small-scale energy to

the larger scales and forward-scatter or dissipation of large-scale energy by the small

scales; both are essential for a reasonable representation of the subfilter-scale effects.

Piomelli (1999), Sarghini et al. (1999), and Lesieur & Métais (1996) give compre-

hensive reviews of and further insights to large-eddy simulation and the variety of

subfilter-scale models that have been introduced.

In the scale-similarity approach, the approximation for τij would be more accurate

if a higher order approximation to the full velocity field could be obtained. A more

exact representation of SFS motions is especially desirable for applications of LES to

computation of complex flows, including geophysical flows. In such cases the subfilter

scales are probably not isotropic, as assumed in eddy-viscosity SFS models. Shah &

Ferziger (1995) proposed a new non-eddy-viscosity model (the stimulated small scale,

or S3, model) in which a local approximation of total quantities in terms of filtered
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ones is introduced; the scale-similarity model is a special case. In this chapter we

propose a simplified version of the S3 model.

Domaradzki & Saiki (1997) also developed a method which creates an estimate of

the subfilter-scale velocity based on the resolved scales. This estimate is then used to

calculate the SFS stress. Their model is a generalization of Bardina’s scale-similarity

model. The model was designed for spectral space calculations, but has been ex-

tended to physical space by Domaradzki & Loh (1999). With a similar approach,

Geurts (1997) developed a generalized scale-similarity model using a polynomial to

approximate the inverse filtering operation. Recently, Stolz & Adams (1999) also

proposed an approximate deconvolution procedure for estimating the velocity.

Velocity estimation methods that lead to models of the scale-similarity type are

only valid for flows in which the interaction between resolved and unresolved scales

occurs primarily in the vicinity of the filter cutoff. As noted by Domaradzki & Saiki

(1997), this seems to be the case for all low Reynolds number cases that have been

investigated experimentally and numerically (see e.g. Liu et al., 1994).

In the SFS model described here, the unresolved velocity is represented by suc-

cessive inversion of a Taylor series expansion of the resolved velocity field. This

representation is used to estimate the velocity in the same spirit as the recently intro-

duced methods described above. The expansion is easily derived and can be shown

to be a good approximation to the unresolved velocity field, at least in low Reynolds

number flows. The mathematical expansion serves to close the Navier-Stokes equa-

tions by providing an expression for the subfilter stress, τij. Furthermore, in analogy

to Reynolds-averaged modeling where the Reynolds stress equations are modeled, one

can derive the evolution equations for the subfilter-scale stress. These evolution equa-

tions allow systematic evaluation of the relative contributions by advection, diffusion,

dissipation, pressure, rotation, and stratification in the subfilter-scale effects felt by

the resolved components of the flow. The approach is similarly applied to the scalar

transport equation, as done by Katopodes et al. (2000a) (see Appendix B).

In this chapter, we prove that the model for the stresses obtained by the series

expansion method is an exact solution of the evolution equations for the subfilter-scale

stresses, to a known accuracy (the series truncation order) in the filter width. We

subsequently illustrate the behavior of this model applied to a test function, and give

results from a priori tests based on DNS data for a stably-stratified shear flow.
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An important feature of the series model is that it is easily applied when the filter

width is not equal in all directions, which is the case for the DNS data used herein.

No parameters occur in the model, and nothing is assumed about the form of the

SFS motions. The model should thus be able to capture anisotropic motions better

than eddy-viscosity models. Furthermore, the order of accuracy of the method is

determined by the series truncation order chosen. Models of the scale-similar form

are also invariant under Galilean transformations (Speziale, 1985), and exhibit correct

near-wall behavior (Sarghini et al., 1999). The S3 model of Shah & Ferziger (1995),

to which this model is related, has been shown to be superior to the Smagorinsky

and mixed models in LES of plane channel flow and flow past a cubic obstacle (Shah,

1998). Similar behavior is expected with the series expansion model as the two models

are equivalent to fourth order in the filter width (Ding, 2000). The model presented

here is also easy to implement.

3.2 Derivation of SFS evolution equations and

series expansion model

In the following discussion, all variables are assumed to be smooth; no discretization

is applied. We begin with the Navier-Stokes equations, written with the Boussinesq

approximation for buoyancy effects and the Coriolis force included,

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ρ

ρ0
gδi3 + εimnfnum . (3.1)

Here ui denotes the velocity, ρ the density, ρ0 the reference density, ν the kinematic

viscosity, p the pressure, and fn the Coriolis parameter. Repeated indices indicate

summation. The spatially filtered equations are

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ρ

ρ0
gδi3 + εimnfnum −

∂τij
∂xj

(3.2)

where the SFS stress is defined as

τij = uiuj − uiuj . (3.3)
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Properties of the filter (indicated by an overbar) are described later. The filtered

equations are not closed due to the nonlinear term uiuj included in τij. We can seek

to close the problem by developing an evolution equation for τij by the following

procedure.

We first obtain an evolution equation for uiuk by multiplying the Navier-Stokes

equation for ui by uk, the analogous equation for uk by ui, and adding the two

equations together. We then use integration by parts to express the viscous and

pressure terms in more familiar forms. Filtering the resulting equation gives the

evolution equation for uiuk. Similarly, we can develop an evolution equation for uiuk.

Subtracting the equation for uiuk from the equation for uiuk, we obtain an evolution

equation for τij:

∂τik
∂t

+ uj
∂τik
∂xj

= −uj
∂uiuk
∂xj

+ uj
∂uiuk
∂xj

+ uk
∂τij
∂xj

+ ui
∂τkj
∂xj

− 1

ρ0

(
∂uip

∂xk
− ∂uip

∂xk
+
∂ukp

∂xi
− ∂ukp

∂xi

)

+
1

ρ0

(
p
∂ui
∂xk
− p ∂ui

∂xk
+ p

∂uk
∂xi
− p∂uk

∂xi

)

+ ν
∂2τik
∂xj∂xj

− 2ν
∂ui
∂xj

∂uk
∂xj

+ 2ν
∂ui
∂xj

∂uk
∂xj

− g

ρ0
(ρukδi3 − ρ ukδi3 + ρuiδk3 − ρ uiδk3)

+ fn(εimnτmk − εkmnτmi) . (3.4)

It has been assumed that the filtering operation commutes with the spatial derivatives,

which is true for a spatially homogeneous filter. Some error is introduced if this is

not so (Ghosal & Moin, 1995).

Equation 3.4 describes the evolution of the SFS stress tensor τik; it is seen that

τik is influenced by advection, diffusion, pressure, buoyancy, and Coriolis terms. The

pressure terms are written in the familiar form separating the so-called “pressure-

diffusion” and “pressure-strain” terms. The viscous terms include the effects of trans-

port and dissipation (Hinze, 1975, p. 74). Several advection terms appear due to the

rearrangement of the equations, one of which is the triple velocity correlation term.

It is desirable that a model for the SFS stresses capture the effect of all of these

terms. Note that these equations involve the full velocity and pressure fields, as no
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decomposition has been made. If the Reynolds decomposition is performed, sepa-

rating all terms into average and fluctuating components, and the averaging rules of

the Reynolds-Averaged Navier-Stokes equations are used, Eq. 3.4 reduces to the well-

known Reynolds stress evolution equation. There, the “pressure strain” and other

familiar terms arise as correlations of fluctuating variables instead of the full variables.

Equation 3.4 is not closed because new correlation terms have appeared. If we are

to obtain an expression for τik to be used in the resolved flow equation (3.2), we must

make approximations to relate the unclosed terms to known terms from the resolved

flow. The traditional procedure has been to use scaling and physical arguments to

model the unclosed terms. Here, we follow a purely mathematical approach to obtain

an approximate solution to these equations. With that aim, we introduce a multi-

dimensional Taylor expansion for the velocity, density, and pressure fields at any

point, e.g.,

ui(x
′
j) ≈ ui(xj) + (x′m − xm)

∂ui(xj)

∂xm
+

1

2
(x′m − xm)(x′n − xn)

∂2ui(xj)

∂xm∂xn
+ · · · , (3.5)

using index notation for compactness. The Taylor expansion was used in this way

thirty years ago by Leonard (1974).

We now apply an anisotropic Gaussian filter:

ui(x, y, z) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G(x− x′, y − y′, z − z′)ui(x′, y′, z′) dx′dy′dz′ (3.6)

where

G(x, y, z) =
63/2

π3/2∆x∆y∆z

exp

(
−6x2

∆2x
− 6y2

∆2y
− 6z2

∆2z

)
(3.7)

and ∆x,∆y,∆z are the filter sizes in each direction. Other filters could be used here,

including asymmetric filters, with a change in the expansion coefficients below (but

see the consequences of using spectral cutoff filters, as discussed in the following

sections). The Gaussian filter eliminates all terms with odd powers of x, y, or z due

to symmetry, so that

ui(x, y, z) = ui +
∆2x
24

∂2ui
∂x2

+
∆2y
24

∂2ui
∂y2

+
∆2z
24

∂2ui
∂z2

+
∆4x
1152

∂4ui
∂x4

+
∆4y
1152

∂4ui
∂y4

+
∆4z
1152

∂4ui
∂z4
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+
∆2x∆

2
y

1728

∂4ui
∂x2∂y2

+
∆2y∆

2
z

1728

∂4ui
∂y2∂z2

+
∆2x∆

2
z

1728

∂4ui
∂x2∂z2

+O(∆6) . (3.8)

Asymmetric filters would give a more complex expression because all derivative terms

would be retained; they are not included in this work. Rearranging and using Eq. 3.8

recursively, we obtain

ui(x, y, z) ≈ ui(x, y, z)−
∆2x
24

∂2ui
∂x2
− ∆2y

24

∂2ui
∂y2
− ∆2z

24

∂2ui
∂z2

+
∆4x
1152

∂4ui
∂x4

+
∆4y
1152

∂4ui
∂y4

+
∆4z
1152

∂4ui
∂z4

+
5∆2x∆

2
y

1728

∂4ui
∂x2∂y2

+
5∆2y∆

2
z

1728

∂4ui
∂y2∂z2

+
5∆2x∆

2
z

1728

∂4ui
∂x2∂z2

+O(∆6) ,(3.9)

which expresses the full velocity at a point (x, y, z) in terms of the filtered velocity at

that point. If the filter is isotropic, Eq. 3.9 reduces to

ui(x, y, z) ≈ ui(x, y, z)−
∆2

24
∇2ui +

∆4

1152

(
∂4ui
∂x4

+
∂4ui
∂y4

+
∂4ui
∂z4

)

+
5∆4

1728

(
∂4ui
∂x2∂y2

+
∂4ui
∂y2∂z2

+
∂4ui
∂x2∂z2

)
+O(∆6) . (3.10)

This simplified form of the Taylor expansion will be used in the remaining derivations,

as the anisotropic form is more cumbersome algebraically. Terms of O(∆4) and higher

will also be ignored subsequently. The anisotropic results to fourth order can be

recovered by replacing ∆2

24
∇2 by

∆2x
24

∂2

∂x2
+

∆2y
24

∂2

∂y2
+

∆2z
24

∂2

∂z2
. (3.11)

3.2.1 Generation of expanded evolution equations for τij

In Reynolds-averaged modeling, the evolution equations for τij are often simplified

by neglecting various terms. It is therefore of interest to determine the importance

of these terms in the evolution of the SFS stress as given by Eq. 3.4. To obtain a

closed form of the equations, we now substitute the expansion in Eq. 3.10 (and similar

expansions for pressure and density) into the unclosed terms in Eq. 3.4 and simplify.
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The evolution equation for τik, accurate to O(∆4), is then

∂τik
∂t

+ uj
∂τik
∂xj

= −uj
∂uiuk
∂xj

+
∆2

24

(
uj
∂ui∇2uk
∂xj

)
+

∆2

24

(
uj
∂uk∇2ui
∂xj

)

+
∆2

24

(
∇2uj

∂uiuk
∂xj

)
+ uj

∂uiuk
∂xj

− ∆2

24
uj

(
∂ui∇2uk
∂xj

)

− ∆2

24
uj

(
∂uk∇2ui
∂xj

)
+ uk

∂τij
∂xj

+ ui
∂τkj
∂xj

− 1

ρ0

[
∂ukp

∂xi
− ∆2

24

(
∂p∇2uk
∂xi

)
− ∆2

24

(
∂uk∇2p
∂xi

)
− ∂ukp

∂xi

+
∂uip

∂xk
− ∆2

24

(
∂p∇2ui
∂xk

)
− ∆2

24

(
∂ui∇2p
∂xk

)
− ∂uip

∂xk

]

+
1

ρ0

[
p
∂uk
∂xi
− ∆2

24

(
p
∂∇2uk
∂xi

)
− ∆2

24

(
(∇2p) ∂uk

∂xi

)
− p∂uk

∂xi

+ p
∂ui
∂xk
− ∆2

24

(
p
∂∇2ui
∂xk

)
− ∆2

24

(
(∇2p) ∂ui

∂xk

)
− p ∂ui

∂xk

]

+ ν
∂2τik
∂xj∂xj

− 2ν
∂ui
∂xj

∂uk
∂xj

+ ν
∆2

12

∂ui
∂xj

∂∇2uk
∂xj

+ ν
∆2

12

∂∇2ui
∂xj

∂uk
∂xj

+ 2ν
∂ui
∂xj

∂uk
∂xj

− g

ρ0

(
ρuk −

∆2

24
ρ∇2uk −

∆2

24
uk∇2ρ− ρ uk

)
δi3

− g

ρ0

(
ρui −

∆2

24
ρ∇2ui −

∆2

24
ui∇2ρ− ρ ui

)
δk3

+ fn(εimnτmk + εkmnτmi) . (3.12)

Equations 3.12 are a closed set of equations for τik; the contribution of all the filtered

quantities to the evolution of τik can be explicitly computed. Such a set of equations

could be solved for the six independent components of τik, without need for further
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simplifications or assumptions. Although feasible, this would add a significant com-

putational expense to the solution of the resolved flow equation (3.2). The solution

obtained for ui would be accurate to O(∆4).

3.2.2 Generation of the τij models

In the spirit of velocity estimation models, instead of solving six more equations for

τij, we derive models for τij by substituting the series expansion for the velocity

(Eq. 3.10) directly into Eq. 3.3. When the unclosed term is expanded, and terms

fourth order and higher are neglected, we obtain

Model 1: τik = uiuk − uiuk −
∆2

24
ui∇2uk −

∆2

24
uk∇2ui . (3.13)

This form is not Galilean invariant, and should only be used if care is taken with the

formulation of the advective terms (e.g. if the reconstruction is implemented directly

in the advective terms). If the explicit term, uiuj, is also expanded, the representation

becomes

Model 2: τik = uiuk − uiuk −
∆2

24
ui∇2uk −

∆2

24
uk∇2ui +

∆2

24
ui∇2uk +

∆2

24
uk∇2ui ,

(3.14)

which is Galilean invariant. To second order in the filter width, Eq. 3.14 reduces

to the Bardina scale-similarity model. This scale-similarity property of Eq. 3.14 will

later be shown to have desirable effects (see a priori test section). The higher order

terms that are not present in the Bardina model can be shown to be dissipative (Clark

et al., 1977). Further properties of these two models will be discussed in the sections

that follow.

Although we did not directly solve the evolution equations for τik, we can substi-

tute Eq. 3.13 into the evolution equation (3.12) to demonstrate that it is indeed a

solution, as the resulting equation is the sum of the evolution equations for the com-

ponents of Eq. 3.13. It is perhaps more straightforward to construct the evolution

equation for the approximate form (Eq. 3.13) and show that it is the same as Eq. 3.12.

This is done by a procedure similar to the derivation of Eq. 3.4. After adding and

subtracting the evolution equations for each term that makes up the approximate τik,



36 CHAPTER 3. SFS MODELS FOR LES USING TAYLOR SERIES

and simplifying using the series expansion introduced previously to effectively “un-

bar” certain terms (see text leading to Eq. A.2 in Appendix A), we obtain Eq. 3.12 to

O(∆4). Thus, to fourth-order accuracy in the filter width, ∆, we have a solution for

the subfilter-scale stresses, τik. As can be shown by a similar procedure, Eq. 3.14 is a

solution, to fourth order, of the analogous version of Eq. 3.12 that is obtained when

the closed terms are expanded as well. Note that the evolution equation developed

for the approximate τik indicates that these subfilter-scale stresses are influenced by

buoyancy and Coriolis forces, as well as by diffusion, pressure and advection terms, as

are the resolved velocities. Thus the expressions in Eqs. 3.13 and 3.14 for τik capture

the effects of the relevant physical mechanisms, to fourth order in the filter width.

Two final observations are worthwhile. First, the preceding analysis can be carried

out with any spatially homogeneous filter. Indeed, up to fourth order in the filter

width, the analytical results for the tophat filter (see Eqs. 3.16 and 3.17 below) are

identical. However, special consideration is needed if a spectral cutoff filter is used.

As concluded by Domaradzki & Saiki (1997) after examining several analyses and

theories, “the SGS energy transfer is dominated by energy exchanges among resolved

and unresolved scales from the vicinity of the cutoff.” Thus, as Leonard (1974) pointed

out, “large wave-number Fourier modes need the assistance of small wave-number

modes to transfer energy from large scales to small scales. In the Fourier method

the sharp cutoff in wave-number space precludes such a transfer.” Accordingly, the

sharp-cutoff filter is ill-suited to velocity estimation methods, including the series

expansion model presented here. If it were used, two different cutoff wavenumbers

would be needed for terms filtered more than once to prevent the Bardina term from

disappearing (Zang et al., 1993).

Second, any fourth-order approximation to the full velocity in terms of the resolved

field would yield a SFS stress model accurate to fourth order in the filter width.

The nice feature of the series expansion model used above is that if the velocity

field is sufficiently smooth, the fourth-order approximation is a simple mathematical

expression that does not involve empirical modeling.
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3.3 Rudimentary tests of the model

Following the example of Geurts (1997), we perform a modified wave number analysis

of the models in Eqs. 3.13 and 3.14. We consider one mode of a velocity field,

u = exp(ikx), and evaluate the one-dimensional SFS stress,

τ = u2 − u2 . (3.15)

We use two different filters, defined in one-dimensional form as

f(x) =
∫ ∞

−∞
H(x− x′)f(x′)dx′ (3.16)

where

HG(x) =

√
6

π∆2
exp

(
−6x2

∆2

)
; HT (x) =





1/∆ for |x| ≤ ∆/2

0 for |x| > ∆/2
(3.17)

for the Gaussian filter and the tophat filter, respectively. The filtered velocity takes

the form

u = G(k∆) exp(ikx) , (3.18)

where

GG(k∆) = exp

(
−k

2∆2

24

)
; GT (k∆) =

sin(k∆/2)

k∆/2
, (3.19)

for the Gaussian and tophat filters, respectively. The series expansion used to repre-

sent the unfiltered velocity becomes

u? = A(k∆)G(k∆) exp(ikx) , (3.20)

where

AG(k∆) =

(
1 +

k2∆2

24
+
k4∆4

1152

)
(3.21)

for the Gaussian filter, and

AT (k∆) =

(
1 +

k2∆2

24
+

7k4∆4

5760

)
(3.22)
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Figure 3.1: Amplitude of velocity estimates. Solid line: Gaussian filter, dotted line:
tophat filter. ◦: 2nd order; 2: 4th order; .: 6th order.

for the tophat filter. The truncation order of A(k∆) can be specified, and is O(∆6)

above.

In Fig. 3.1 we plot the amplitude, A(k∆)G(k∆) (of Eq. 3.20) versus k∆ for the two

filters with different truncation orders of the expansion in A(k∆). This corresponds

to Fig. 1 in Geurts (1997). The fourth-order accurate approximation (6th-order trun-

cation error) gives the best results. In all cases, the amplitude deviation from 1

increases with k∆, but the agreement is good for k∆ < π, the range of interest. The

Gaussian filter gives a better approximation to the full velocity than the tophat filter,

especially at higher k.

The exact form of the SFS stress for u = exp(ikx) is

τG =
[
GG(2k∆)−G2G(k∆)

]
exp(2ikx) , (3.23)

for the Gaussian filter, and

τT =
1

2

[
1−G2T (k∆)

]
− 1

2

[
GT (2k∆)−G2T (k∆)

]
exp(2ikx) , (3.24)

for the tophat filter, which is the equation given by Geurts (1997). The approximate
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forms are found by using the estimate of the unfiltered velocity given in Eq. 3.20 to

obtain the 1-D representation of Eq. 3.13:

Model 1: τM1 = u?2 − u2 , (3.25)

so that

τGM1 = G2G(k∆)
[
A2G(k∆)GG(2k∆)− 1

]
exp(2ikx) , (3.26)

τTM1 =
1

2
G2T (k∆)

[
A2T (k∆)− 1− (A2T (k∆)GT (2k∆)− 1) exp(2ikx)

]
. (3.27)

Alternatively, if we also use the approximate velocity (Eq. 3.20) in the calculation of

the second term in Eq. 3.15, as done in Eq. 3.14, we obtain

Model 2: τM2 = u?2 − u?2 , (3.28)

and

τM2 = A2(k∆)G2(k∆) τ , (3.29)

for both the tophat and Gaussian filters. This approximate form is simply the appli-

cation of the filter and expansion operators, A(k∆)G(k∆), on τ twice.

The amplitude of the oscillating parts of τGM1, τTM1, and τM2 are shown in

Figs. 3.2-3.5 for different truncation orders of the models. The approximate forms are

shown versus the amplitudes of the oscillating parts of the exact τ given in Eqs. 3.23

and 3.24 for each filter. Again, the agreement for k∆ < π is good. Of the models for

τ , Model 1 seems to perform better than Model 2, and the Gaussian filter models are

more effective than the tophat models in representing the subfilter stress at higher

wave numbers. Figures 3.6 and 3.7 show a comparison of Model 1 and Model 2 for

each filter type. It is seen that for the Gaussian filter, Model 1 is very close to the

exact subfilter stress, and Model 2 is also quite good. Model 1 also performs better

than Model 2 for the tophat filter.

The tophat filter version in Eq. 3.29 shown in Fig. 3.3 can be compared to Fig. 2

in Geurts (1997). The fourth-order model derived here gives results comparable to

or perhaps slightly better than the case L = 2 in Geurts (1997). As was done by
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Figure 3.2: Amplitude of τGM1 (Gaussian filter) and exact τ . Solid line: exact; dotted
line: 2nd-order model; dashed line: 4th-order model; dash-dotted line: 6th-order
model.

Geurts, this test could be extended to the general case u =
∑
k exp(ikx); this is not

done here, as it provides very similar information about the velocity approximation.

3.4 A priori tests

A more robust preliminary test of the subfilter-scale model is provided by an a priori

test (Clark et al., 1979; Bardina et al., 1983; Liu et al., 1994), in which data from a

direct numerical simulation (DNS) are filtered and compared to the model. A priori

tests indicate the degree of correlation between the modeled and exact subfilter-scale

terms and are useful indications of the expected performance of a SFS model in actual

LES computations (a posteriori tests). Comparisons can be made at the tensor (τij),

vector (∂τij/∂xj), and scalar (τij∂ui/∂xj) levels.

Although a high correlation (close to one) with the exact value is not a sufficient

condition for a good SFS model, it is certainly a desirable feature. Of the commonly

used SFS models, it is known that the Smagorinsky model does poorly in a priori

tests, as the modeled τij is not aligned with the actual stress tensor. The Smagorinsky

model is, however, able to provide adequate dissipation and thus performs fairly well
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Figure 3.3: Amplitude of τTM1 (tophat filter) and exact τ . Solid line: exact; dotted
line: 2nd-order model; dashed line: 4th-order model; dash-dotted line: 6th-order
model.
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Figure 3.4: Amplitude of τGM2 (Gaussian filter) and exact τ . Solid line: exact; dotted
line: 2nd-order model; dashed line: 4th-order model; dash-dotted line: 6th-order
model.
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Figure 3.5: Amplitude of τTM2 (tophat filter) and exact τ . Solid line: exact; dotted
line: 2nd-order model; dashed line: 4th-order model; dash-dotted line: 6th-order
model.
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Figure 3.6: Amplitude of τGM1, τGM2 (Gaussian filter) and exact τ . Solid line: exact;
+++: 4th-order Model 1; ×××: 6th-order Model 1; dotted line: 4th-order Model 2;
dashed line: 6th-order Model 2.
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Figure 3.7: Amplitude of τTM1, τTM2 (tophat filter) and exact τ . Solid line: exact;
+++: 4th-order Model 1; ×××: 6th-order Model 1; dotted line: 4th-order Model 2;
dashed line: 6th-order Model 2.

in some actual LES. Scale-similarity models (e.g., the Bardina model), on the other

hand, display very good correlations, but do not dissipate enough energy when imple-

mented in LES. A posteriori tests are necessary to obtain complete information on a

model’s performance and, in particular, on the actual level of energy dissipation; see

results for atmospheric boundary layer flow simulations in Chapter 6. Nevertheless,

ratios between modeled and exact quantities (particularly at the scalar level) from a

priori tests provide a quick assessment as to whether the model provides adequate

dissipation.

The DNS dataset used here is from the sheared and stably-stratified homogeneous

turbulent flow computations performed by Shih et al. (2000). The Reynolds number

based on the Taylor microscale is 89.44, the Richardson number is 0.16, and the

nondimensional shear number is 2.0. The DNS data, ui, are defined on a 1283 grid

with domain size 2π3 where ∆DNS < ∆LES. The DNS grid is anisotropic due to

coordinate stretching factors used for computation of the homogeneous shear flow.

Here, x1 is the streamwise direction, x2 is the vertical direction, and x3 is the spanwise

direction; shear is applied in the x1, x2-plane. The DNS data are sampled on the scale

of the LES grid and filtered using a Gaussian filter of width ∆ = 2∆LES to obtain
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τ12
∂τ1j

∂xj
τij

∂ui

∂xj

S C 0.1610 0.4746 0.6962
R 3.5042 2.8092 1.4780

B C 0.9525 0.9194 0.9665
R 1.3367 1.9179 1.3666

MC C 0.9602 0.7981 0.9700
R 1.2927 1.9024 1.3158

T4 C 0.9239 0.9135 0.9430
R 1.0352 1.1037 1.0790

MT4 C 0.9875 0.9763 0.9917
R 1.0702 1.2636 1.0724

MT6 C 0.9969 0.9937 0.9972
R 1.0097 1.0611 1.0062

Table 3.1: Gaussian Filter: Correlations, GR = 2, FGR = 2.

the LES field, ui. This filter-grid ratio is chosen so that the discretization errors in

an actual LES would be smaller than the contribution of the SFS terms (Ghosal,

1996). Since the DNS data represent the exact velocity field, the exact subfilter-

scale stress can be computed at each point on the grid. The modeled SFS stress

can be computed from the LES field defined on the LES grid, and compared to the

exact stress at the same points on the LES grid. The correlation coefficient and

the ratio of the root-mean-square (rms) values are then computed for each of the

SFS stress components. The correlation coefficient measures the degree of linearity

in the relationship between the modeled and exact SFS stress, while the ratio gives

information about the coefficient of proportionality.

Tables 3.1-3.3 show correlation coefficients (C) and ratios (R) for selected subfilter-

scale quantities: τ12 is the SFS shear stress in the shear flow, ∂τ1j/∂xj is the divergence

of the subfilter stress which appears in the momentum equations, and τij∂ui/∂xj is

the SFS stress dissipation. The ratio is the exact DNS rms value divided by the

modeled rms value, and should be close to one. For the dissipation term, the ratio

gives an indication of the magnitude of energy dissipated by the model. Results are

presented for the following subfilter-scale models: Smagorinsky (S), Bardina scale-

similarity (B), modified Clark (MC), 4th-order series expansion using Eq. 3.13 (T4),

modified 4th-order series expansion using Eq. 3.14 (MT4), and modified 6th-order

series expansion using Eq. 3.14 (MT6). The models are given in Appendix A. LES
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τ12
∂τ1j

∂xj
τij

∂ui

∂xj

S C 0.1557 0.4169 0.6029
R 3.8231 2.9590 1.5601

B C 0.8881 0.8748 0.9048
R 1.6934 2.6138 1.8056

MC C 0.9082 0.7750 0.9151
R 1.5108 2.4327 1.6210

T4 C 0.8282 0.8013 0.8599
R 1.1623 1.2721 1.2548

MT4 C 0.9544 0.9440 0.9591
R 1.1800 1.5072 1.2307

MT6 C 0.9831 0.9764 0.9831
R 1.0411 1.1662 1.0663

Table 3.2: Gaussian Filter: Correlations, GR = 4, FGR = 2.

to DNS grid ratios of GR = 2, 4, 8 are considered, where ∆LES = GR ∆DNS. In each

case the filter-grid ratio is FGR = ∆/∆LES = 2.

The correlations for the Bardina scale-similarity model are quite high; however, the

ratios are not very good, indicating that the model does not capture energy dissipation

correctly, as noted previously. The Smagorinsky model does not perform well at

all, but the ratio for the dissipation is better than that for the Bardina model for

GR = 4, 8. The MT4 model contains the scale-similarity terms of the Bardina model,

while model T4 does not. It seems that the inclusion of these terms significantly

improves the correlation coefficients; however, the improvement in the ratios is more

evident only in the 6th-order representation, MT6. (This is also seen in the single

mode tests done in the previous section: Model 1 performs better than Model 2,

which has the Bardina model form, in amplitude comparisons.) The modified Clark

model, derived from the T4 model, performs comparably to the other series expansion

models, often with slightly higher correlations but poorer ratios.

The correlations are highest for the MT6 model, the 6th-order expression for the

series expansion model, with values over 0.99 for GR = 2. Ratios as good as 1.0062

are obtained for the SFS dissipation modeled with MT6 showing that the dissipation

is captured to within 1% of the exact value. The correlation decreases when the LES

grid becomes coarser, i.e., as GR increases and the resolved scale wavenumber cutoff

becomes smaller; it is harder to represent the higher wavenumbers with a smaller
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τ12
∂τ1j

∂xj
τij

∂ui

∂xj

S C 0.0925 0.3041 0.3920
R 4.9880 3.1754 2.0092

B C 0.7759 0.7852 0.8181
R 2.8324 4.1177 3.1285

MC C 0.7960 0.7104 0.8263
R 2.1099 3.3449 2.4171

T4 C 0.6691 0.6032 0.7470
R 1.6837 1.7023 1.8542

MT4 C 0.8769 0.8729 0.8939
R 1.5989 2.0326 1.7325

MT6 C 0.9407 0.9326 0.9422
R 1.2301 1.4111 1.3038

Table 3.3: Gaussian Filter: Correlations, GR = 8, FGR = 2.

range of resolved scales. This is an important limitation when we apply LES to large

domains and Reynolds numbers for which the LES to DNS grid ratio is necessarily

high. However, even at GR = 8, the MT6 model captures most of the SFS stress,

and has a correlation of 0.9422, significantly higher than the other models. Though

the discretization error of the numerical scheme used in many actual LES is larger

than 6th order, it may help to use a more accurate SFS model such as MT6. Similar

results to those in Tables 3.1-3.3 are obtained when a tophat filter is used, though

the numbers are not quite as good overall.

The results from this a priori analysis compare very favorably with a priori tests

performed by others for their models, (see e.g. Domaradzki & Saiki, 1997; Stolz et al.,

1999a; Salvetti & Banerjee, 1995). For a compressible ramp flow, Stolz et al. (1999a)

obtained correlations of approximately 0.99 (as obtained in this work) for their ap-

proximate deconvolution model with seven terms in an inverse filter expansion.

As an illustration of the ability of this velocity estimation model (Eq. 3.9) to

represent the full velocity field, Fig. 3.8 shows contours of the streamwise velocity for

different truncation orders in the velocity estimation. The raw DNS data, which is

sampled on the LES grid defined by the parameter GR, is best represented by the

highest order model, MT6; unlike the lower order models, velocity contours for this

case capture the smaller features of the DNS data quite well. Chapters 5 and 6 show

that the model yields similar convergence when implemented in an LES code.
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Figure 3.8: Contour plots of LES velocity estimates for u1 on an x1, x3-plane, GR = 8.
(a) Sampled DNS field; (b) 2nd-order estimate; (c) 4th-order estimate; (d) 6th-order
estimate.
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3.5 Taylor series convergence

An interesting aspect of the implementation of the series expansion model is the

question of the validity of the Taylor series expansion on a fluctuating field. Aldama

(1990) and Love (1980), for instance, claim that a Taylor series expansion for the

perturbation velocity u′ is not valid because this field is not smoothly varying over

the filter interval ∆. Here, we have expressed the full velocity field (not just the

fluctuating field) in a Taylor series expansion, to eventually express ui as a function

of the resolved velocity, ui. Vreman et al. (1996) also Taylor expand the full velocity

field; they refute Love’s claims, but also maintain that the full velocity is not smoothly

varying over ∆ and hence higher order terms may be larger than the terms retained.

However, the Taylor series is valid for any analytic function. The series converges

for any smoothly varying field, no matter how many oscillations there are over the

interval ∆ (an example is given below).

To illustrate the robustness of Taylor series expansions, we show below the num-

ber of terms needed to represent a cosine wave. Even at a large distance from the

expansion point, the series will converge if enough terms are included. For our case,

where the filter size is twice the grid size, the series must be valid in the filter inte-

gral discussed above. Thus, for a tophat filter, the Taylor series needs to be valid a

maximum distance ∆/2 from the point of interest. On a grid with spacing ∆LES, the

smallest wave that can be supported is of wavelength 2∆LES. With the filter twice

as big as the grid, ∆ = 2∆LES, the expansion needs to be valid a distance ∆LES

away (or half a wavelength). The plot in Fig. 3.9 shows the agreement of the Taylor

series to the exact cosine function when different numbers of terms are taken. At half

a wavelength away, the agreement is good for 2 or 3 terms in the series. Thus the

Taylor series is a good approximation for the grid conditions chosen in this study. If

the filter size were larger, however, the filtering integration would demand that the

Taylor series be a good approximation at a larger distance, and then more terms in

the series would be required for the solution to be as accurate (a full wavelength away,

at least 7 terms are necessary!).
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Figure 3.9: Convergence of Taylor series for function f = cos (x). Exact function and
Taylor series with 2 through 12 terms are shown.

3.6 Implementation of model

One of the most attractive features of the series expansion model is its ease of imple-

mentation. The SFS stress model given by Eq. 3.13 or 3.14 can be directly computed

and substituted into the resolved flow equation. Equation 3.2 must then be discretized

and solved numerically, e.g., by the method of Zang et al. (1994). The computational

cost of using this SFS model will be comparable to the cost of the S3 model (Shah

& Ferziger, 1995). Results for the series model indicate that its CPU requirement

is less than or equal to that for the dynamic two-parameter model (Salvetti et al.,

1997; Ding, 2000), depending (it appears) on whether the grid is a Cartesian grid or

a mapped grid where the metrics add to the cost of computing the model terms. The

greatest difficulty is implementation of the model near solid boundaries, where care

must be taken in representing higher order terms, as discussed in Chapter 6.

Because the SFS stress tensor is O(∆2) (see Appendix A), it is important that the

filter width, ∆, be larger than the grid size upon which discretization is performed.

Otherwise, numerical discretization error in a second-order scheme will have an effect

of the same order of magnitude as the SFS stress. The analysis of Ghosal (1996)
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indicates that choosing the filter width to be at least twice the grid size is advisable.

As noted above, the tophat filter can also be used with the series expansion in

three-dimensions, as was done in one dimension above. Up to fourth order, the

Gaussian and tophat filters give the same expansions, which leads to identical SFS

model expressions, but different numerical results because of the different behaviors

of the filters. However, there is not much difference in the numerical approximation

of these filters, as the Gaussian filter must be truncated, and it may be hard to

distinguish between the discrete representations of these filters when implemented in

a finite-difference or finite-volume simulation. In principle, any filter could be used,

as long as it allows interaction of the smallest resolved and largest unresolved scales

as discussed previously (requiring, therefore, two different filter cutoffs if the spectral

cutoff filter is used). This means that the approach described here for subfilter-scale

modeling could accommodate a commuting filter, allowing implementation of this

model on non-uniform grids.

3.7 Conclusions

As LES begins to be applied to problems in which more of the energy of the flow is

unresolved, the accuracy of the SFS model becomes increasingly important. The series

expansion model proposed here does not assume that the SFS motions are isotropic,

and the model can easily be implemented with an anisotropic filter. Indeed, a priori

test results for an anisotropic case show very high correlations and ratios between the

modeled SFS stress and the exact stress computed from DNS data, indicating that

the model captures SFS motions quite accurately. Furthermore, the model satisfies

the evolution equation for the SFS stress to an arbitrarily-chosen order in the filter

width (4th and 6th orders are used here), making it clear that this SFS model can

account for the effects of buoyancy, Coriolis, and pressure forces. There are of course

small scale phenomena present in combustion or shocks that present further challenges

for SFS modeling. This series model will likely have difficulty with the non-smooth

velocity fields of those cases. However, this SFS model is attractive because it does

not introduce any free parameters, being based on a mathematical expansion. The

model can be implemented numerically with ease and can also be extended to higher

accuracy as desired.



Chapter 4

Numerical errors in large-eddy

simulation∗

Before continuing the discussion of new subfilter-scale modeling approaches in large-

eddy simulation, we consider the effect of other numerical errors in large-eddy simu-

lations. Errors in LES arise from aliasing and discretization errors, and from errors

in the subfilter-scale (SFS) turbulence model. Using a direct numerical simulation

(DNS) dataset of stably-stratified shear flow to perform a priori tests, we compare

the numerical error from several finite-difference schemes to the magnitude of the SFS

force. These numerical errors can often be larger than the entire turbulence modeling

term, and therefore deserve careful consideration. This is an extension of Ghosal’s

analysis (Ghosal, 1996) to realistic flow fields. By evaluating different grid resolutions

as well as different filter-grid ratios, we provide guidelines for LES: for a second-order

finite-difference scheme, a filter-grid ratio of at least four is desired; for a sixth-order

Padé scheme, a filter-grid ratio of two is sufficient.

4.1 Introduction

Large-eddy simulation (LES) has become an increasingly used method for predicting

turbulent flows. However, LES and direct numerical simulation (DNS) both suffer

∗This chapter is a reproduction (with minor modifications) of the paper “A further study of
numerical errors in large-eddy simulations” by Fotini Katopodes Chow (the principal author) and
Parviz Moin, published in the Journal of Computational Physics, January 2003, Volume 184(2),
pages 366-380 (Chow & Moin, 2003), c©2003 Academic Press, reprinted with permission.
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from discretization and aliasing errors that depend on the numerical schemes used.

Because of computational limits, LES has an additional source of error owing to the

fact that the velocity field is not fully resolved. The Navier-Stokes equations are

filtered, and the effect of subfilter-scale (SFS) motions is modeled. Thus numerical

errors in LES result from aliasing and discretization errors, as well as from errors in

the subfilter-scale model.

Much of the current research in LES is focused on the development of improved

SFS models, without reference to perhaps more significant, numerical errors that

are present. However, as LES is applied to more complex problems, it will become

even more important to understand errors inherent in the numerical schemes used,

especially if we hope to create accurate forecast models. While a spectral, dealiased

code may be able to avoid aliasing and finite-difference errors (though not SFS errors),

virtually all turbulence calculations in complex domains are carried out with finite

differences. When finite-differences schemes are used, truncation errors as well as

the formulation used for the nonlinear terms of the Navier-Stokes equations have

been shown to be important for numerical stability and accuracy (Kravchenko &

Moin, 1997). Furthermore, assessment of truncation and aliasing errors is crucial

for ensuring that the contribution of the SFS forcing is not dominated by numerical

errors.

A systematic analysis of these numerical errors is difficult because of nonlinear

interactions between them. The traditional linearized analysis of errors for partial

differential equations is therefore not adequate. Ghosal (1996) was able to draw

important conclusions by using statistical analysis to derive errors in LES from a

random field with a von Kármán energy spectrum. He found that for an eighth-order

finite-difference scheme, the LES filter size must be at least twice the grid spacing

for the contribution of the SFS force to the total nonlinear force to be significant

compared to the errors introduced by aliasing and truncation. For a second-order

finite-difference scheme, Ghosal found that the filter must be at least four times

the grid spacing. Kravchenko & Moin (1997) performed a posteriori tests which

indicated that different (but analytically equivalent) formulations of the nonlinear

terms give different results because of finite-difference and aliasing errors. Blaisdell

et al. (1996) present results which indicate that choosing a particular form for the

nonlinear terms with finite differencing may stabilize the results and reduce the need
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for dealiasing. There have also recently been several studies which have developed

improved higher-order finite-difference schemes with the aim of reducing numerical

errors in LES (see for example Balsara & Shu (2000) and Morinishi et al. (1998)).

Others have performed studies which have explicitly investigated numerical errors

with regard to LES or specifically the computation of SFS models (see Morinishi &

Vasilyev (1998), Tsubokura (2001), and Glendening & Haack (2001)).

Here we present results from error analysis performed using a direct numerical

simulation dataset to generate a filtered subset representing “exact” LES data. In

particular, we aim to examine the conclusions of Ghosal (1996) with a more realistic

flow field. As his results from von Kármán spectra have not been verified by analysis of

real data sets, we seek to re-evaluate his conclusions here, commenting on differences

due to the nature of the data used. As most LES calculations of engineering interest

are performed at moderate Reynolds numbers, we expect the DNS dataset to be

informative. Consideration of SFS model performance in relation to numerical errors

is not the focus of this chapter and will be addressed in Chapter 5.

In Section 4.2 we describe the dataset and our approach in the a priori testing.

Following, in Section 4.3, we discuss the relative magnitudes of the SFS force and

nonlinear terms in relation to filter size and resolution. Sections 4.4 and 4.5 discuss

finite-difference and aliasing errors, and compare them to an ideal SFS forcing term.

4.2 Numerical tests

The DNS data used for a priori testing are from the stably stratified homogeneous

shear flow simulations performed by Shih et al. (2000). (These data were also used

in Chapter 3.) The Reynolds number based on the Taylor microscale is 89.44, the

Richardson number is 0.16, and the nondimensional shear number is 2.0. This dataset

was chosen because the flow is homogeneous (allowing use of Fourier analysis) but

has the increased complexity generated by the stratification; turbulent length scales

are reduced due to the stratification and therefore are more difficult to model than

those from a flow with neutral stratification. We expect that the results from this

dataset will be more realistic than those of a simpler homogeneous flow; however, we

have also examined an isotropic turbulence case produced by the same DNS code and

found similar results. The results from this analysis should therefore be appropriate
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for extension to moderate Reynolds number flows.

The velocity fields used for a priori testing are obtained by using a sharp Fourier

cutoff filter on the full 1283 DNS data. These cutoff filtered fields are treated as

“exact” data for a given grid size. Thus, ui for a particular grid size is obtained by

cutoff filtering the DNS data to remove the high wavenumbers which would not be

present on a coarser grid. LES quantities such as ui and uiuj are then obtained for

each grid size using a Gaussian filter in spectral space. We choose not to use a spectral

cutoff filter for calculation of these LES variables since our primary application area of

interest is in complex geometries where finite-difference methods are used. A tophat

filter could also be used to give comparable results; the discrete filter coefficients used

for tophat and Gaussian filters with finite-difference methods are similar.

Figure 4.1 shows the three-dimensional energy spectra for the velocity fields used

to study numerical errors. Several grid cutoff wavenumbers are considered to study

the effect of different grid resolutions; the grid is reduced from 1283 for the original

DNS to 643, 323, 163, and 83 for the LES grids. Using these “exact” fields, we can

compute the nonlinear and SFS terms for LES using different methods and compare

results for the magnitudes of errors. Notice that the shape of these spectra are quite

different than the von Kármán energy spectra used by Ghosal (1996). In particular,

due to the low Reynolds number of the DNS dataset, the inertial range is very small,

as seen by comparison to the −5/3 slope also plotted. We therefore expect that

our analysis of this dataset may yield different conclusions from the high Reynolds

number results of Ghosal.

The energy spectra in Fig. 4.1 and in all the following figures are computed for

spherical shells and plotted versus the magnitude of the wavenumber. The spherical

wavenumber is computed as κ =
√
k21 + k22 + k23 where k1, k2, k3 are the Cartesian

wavenumbers. Energy from each wavenumber triplet k1, k2, k3 is assigned to the cor-

responding wavenumber bin for κ, chosen at the nearest integer level. The spectra are

often not smooth at the highest wavenumbers due to inadequate statistical sampling

in the outer spherical shells. However, the 1-D spectra (not shown) for these quanti-

ties are smooth even at the tail ends. For simplicity, we will refer to the grid size and

the chosen filter-grid ratio (FGR) instead of the exact cutoff wavenumber for each

LES grid. In addition, most results are presented for the case when the Gaussian LES

filter width is twice the grid spacing (with a 323 grid). We use this as our base case as
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Figure 4.1: Three-dimensional energy spectra of the “exact” velocity fields used for
analysis, obtained by cutoff-filtering the original DNS dataset. A κ−5/3 line is also
plotted for comparison.

this ratio seems to be the most commonly used in the recent literature. We consider

other filter widths in our analysis and comment on their effect. All numerical tests

are performed in Fourier space, as described further in the sections that follow.

4.3 Comparison of total nonlinear and subfilter-

scale terms

The full nonlinear term in the Navier-Stokes equations, ∂uiuj

∂xj
, creates a closure prob-

lem in LES when this term is filtered: ∂uiuj

∂xj
. The usual approach in LES is to replace

this term with the closed term ∂uiuj

∂xj
(assuming the filter and derivatives commute)

and to subtract a SFS force term, ∂τij
∂xj

, from the right-hand side of the equation, where

τij = uiuj−uiuj. This effectively transfers the closure problem to the right-hand side

of the filtered Navier-Stokes equations. Traditionally the approach has been to model

τij as a purely dissipative term, using an eddy-viscosity formulation. As described in

Chapter 2, recent work has shown that this method may not be adequate, especially

when the flow dynamics are sensitive to energy backscatter (counter-gradient transfer

from small to large scales) in the flow.
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Figure 4.2: Energy spectra of the spectrally computed (filtered) nonlinear term (in
the dealiased divergence form) and the SFS term for a fixed resolution (323 grid) and
filter-grid ratios of one and two.

It is interesting to compare the relative magnitudes of the SFS term, ∂τij
∂xj

, and

the total nonlinear term, ∂uiuj

∂xj
. In an ideal LES, the sum of these terms is equal

to the full nonlinear term ∂uiuj

∂xj
which can be obtained from a DNS (after filtering).

In practice, the contribution to the total nonlinear term depends on the SFS model

used. However, even with a perfect SFS model, the contribution of the SFS model

would depend on the filter size chosen. The larger the filter size, the more energy is

placed in the subfilter scales, and the larger the SFS term must be. Figure 4.2 shows

the dependence of the SFS term on the filter size for a fixed grid resolution. This

is similar to Fig. 2 in Ghosal’s paper (Ghosal, 1996); however the spectra are quite

different, as the spectrum of the nonlinear terms generated from the von Kármán

spectrum increases monotonically while there is a definite downturn in the present

data.

Another important trend is that as the resolution of the grids we consider increases

(and hence the absolute filter width decreases for a given filter-grid ratio), the results

approach that of a DNS. Thus the relative contribution of the SFS term to the total

nonlinear term (at a fixed filter-grid ratio) becomes smaller as resolution is increased.

This trend can be seen in Fig. 4.3 where a global measure of the nonlinear and SFS
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Figure 4.3: Global energies of the total nonlinear term (in the dealiased divergence
form) and the SFS term for different grid resolutions, normalized by the sum of the
nonlinear and SFS terms. Data points are shown at the 83, 163, 323, and 643 grid
resolution locations. Filter-grid ratio = 2.

terms is plotted for different grid resolutions. The values are normalized (unlike

Ghosal’s Fig. 6) by the total for both the nonlinear and SFS terms, since the totals

are dependent on the grid resolution. The global measure is the same as that in

Ghosal’s Eq. 81, which is the square root of the integral of the energy spectrum:

σ∗ =
[∫ κm

0
E(∗)(κ)dκ

]1/2
. (4.1)

Here σ∗ is the global measure for a particular quantity (such as the nonlinear terms,

error terms etc.), E(∗) is the three-dimensional energy spectrum for that quantity,

and κm is the maximum wavenumber magnitude. Note that in our case the power

spectrum includes the corners of the wave space, unlike Ghosal’s.

Thus, the importance of accurately representing the SFS term is greatest at low

resolutions where the SFS term contributes a larger percentage of the total force.

However, at low resolutions, numerical error also becomes more significant because

fine-scale motions are not well-represented on the grid.
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4.4 Finite-differencing errors

Modified wavenumber analysis is useful for examining truncation errors of different

numerical schemes. The modified wavenumber, k′, for a finite-difference scheme, is

derived by discrete differentiation of u = exp(ikx) (Moin, 2001). Finite-difference

schemes exhibit large errors near the grid wavenumber cutoff, as evidenced by the

reduced magnitude of the modified wavenumbers. Higher-order finite-difference meth-

ods perform better; however all finite-difference methods have low modified wavenum-

bers near the grid cutoff point. To examine the effect of truncation errors, we will

insert the modified wavenumbers in place of the true wavenumber into spectral dif-

ferentiation routines to compare finite-difference and spectral results, as was done by

Kravchenko & Moin (1997).

Even though all spatial derivatives in the LES equations will have finite-differencing

errors, we are primarily interested in the truncation error in the nonlinear term be-

cause this has the potential to be very large and overshadow the contribution of

the SFS term. In Fig. 4.4 we compare the spectrum of the finite-difference error in

computing the nonlinear term (computed using the divergence form defined later in

Eq. 4.3) to the SFS force term, with a filter-grid ratio of unity. The finite-difference

error is computed by subtracting the nonlinear term calculated with a finite-difference

scheme from that of the exact (spectrally calculated) nonlinear term. We see that

the trend is similar to that in Ghosal’s Fig. 4: the SFS force at high wavenumbers

is dominated by the error in the nonlinear terms, even when the nonlinear terms are

computed with a 6th-order Padé scheme.

This situation cannot be improved by increasing the grid resolution, as also demon-

strated by (Ghosal, 1996, see his Fig. 3). When the grid resolution is increased, finer-

scale motions are better resolved and the role of the SFS term decreases, as seen in

Fig. 4.3. The finite-difference error does not decrease, however, as the grid must now

resolve a larger range of motions as these are no longer in the subfilter range. Thus

the finite-difference error continues to dominate the SFS term.

Ghosal (1996) suggests that by choosing the proper filter-grid ratio in combination

with a high-order finite-difference scheme it is possible to reduce the finite-difference

error sufficiently. He shows that the filter-grid ratio has a pronounced effect on the

magnitude of the error term. We observe the same trend when this is done for our
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Figure 4.4: Energy spectra of the finite-differencing error in the nonlinear term in the
dealiased divergence form, computed with second- and fourth-order finite-difference
(FD) and sixth-order Padé schemes, compared to the SFS force term. Filter-grid
ratio = 1; 323 grid.

DNS dataset. However, we choose to make the comparisons differently. Instead of

keeping the filter cutoff fixed and changing the grid size as Ghosal does, we keep

the grid size fixed and change the filter size to change the filter-grid ratio. Though

the trends observed are similar, our perspective is more directly applicable to real

LES computations: the grid resolution is not readily increased because of computer

limitations, but the filter-grid ratio can be adjusted easily.

Figure 4.5 shows that increasing the filter-grid ratio by a factor of two improves

results appreciably. The errors for the second-order and fourth-order finite-difference

schemes and the Padé scheme are smaller over much of the wavenumber range, though

the errors still dominate at high wavenumbers. This is consistent with Ghosal’s

conclusions. In particular we see similar features in our Fig. 4.5 and Ghosal’s Fig. 10,

for a filter-grid ratio of two. It is not until the filter-grid ratio is equal to four that

the second-order finite-difference scheme becomes acceptable. Figure 4.6 shows the

results for this combination, where the truncation error no longer dominates the SFS

force. Ghosal’s Fig. 9 also indicates that for a second-order central difference scheme,

the filter-grid ratio should be at least 4, which is consistent with our results, even

though his plot is for a grid 43 times larger.
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Figure 4.5: Energy spectra of the finite-differencing error in the nonlinear term in the
dealiased divergence form, computed with second- and fourth-order finite-difference
and sixth-order Padé schemes, compared to the SFS force term. Filter-grid ratio =
2; 323 grid.
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Figure 4.6: Energy spectra of the finite-differencing error in the nonlinear term in the
dealiased divergence form, computed with second- and fourth-order finite-difference
and sixth-order Padé schemes, compared to the SFS force term. Filter-grid ratio =
4; 323 grid.



4.4. FINITE-DIFFERENCING ERRORS 61

10
1

10
2

10
−1

10
0

grid wavenumber cutoff

G
lo

ba
l e

rr
or

, n
or

m
al

iz
ed

2nd−order FD
4th−order FD
Pade
Exact SFS force

Figure 4.7: Global finite-differencing error in the nonlinear term in the dealiased
divergence form, computed with second- and fourth-order finite-difference and sixth-
order Padé schemes, compared to the SFS force term. Data points are normalized
by the total nonlinear terms and shown at the 83, 163, 323, and 643 grid resolution
locations. Filter-grid ratio = 2.

Figure 4.7 shows the global truncation error compared to the global SFS force for

a filter-grid ratio of two. The terms are normalized with respect to the total nonlinear

terms to adjust for the energy at different grid resolutions. For a filter-grid ratio of

two, only the Padé scheme gives a total error significantly less than the SFS force for

all grid resolutions. Notice that the global SFS force is larger than all the errors for

grid sizes of 83 and 163, regardless of the scheme used. The explanation for this is

probably that at such coarse resolution, the “exact” field we are comparing to (see

Fig. 4.1) does not contain much energy or many fine scale motions, so the error from

differentiation is not large since the field is smooth.

It is also important to understand exactly what the consequences are of adjusting

the filter-grid ratio. When the filter size is increased on a fixed grid, a larger portion

of motions must be represented by the SFS term. Figure 4.8 shows the total errors for

the second-order finite-difference scheme for different grid resolution and filter-grid

ratios. This verifies our conclusion from Figs. 4.4-4.6 that increasing the filter-grid

ratio makes the total finite-differencing error much smaller. Figure 4.8 indicates

that for all grid resolutions, error is reduced by increasing the filter-grid ratio. The
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Figure 4.8: Global finite-differencing error in the nonlinear term (NL) in the dealiased
divergence form with second-order finite differencing, compared to the SFS force term
for different filter-grid ratios. Data points are normalized by the total nonlinear terms
and shown at the 83, 163, 323, and 643 grid resolution locations.

magnitude of the SFS force increases with the filter-grid ratio, as more of the energy

is placed into the subfilter scales, so that for FGR = 4 the SFS force dominates the

error for all grid resolutions.

In summary, Ghosal’s results lead to the conclusion that if the effect of the SFS

terms is to be significant, it is necessary to compute SFS terms using a filter width

that is at least twice the size of the grid spacing, and then only with an eighth-order

finite-difference scheme. To achieve the same results with a second-order scheme, the

filter would have to be made at least four times larger than the grid spacing. In our

tests (which use realistic spectra for low Reynolds number flows), we find that the

6th-order Padé scheme performs very well for FGR = 2 or greater. If a second-order

scheme is to be used, FGR = 4 will give a global finite-difference error that is smaller

than the SFS term. These requirements are quite stringent. In practice, many LES

codes use second-order finite-difference methods with a filter-grid ratio of unity or at

best two. Some of the results of these LES codes are likely contaminated by significant

numerical errors.
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4.5 Aliasing errors

Aliasing errors occur when variables are multiplied in physical space; high frequency

components produce higher frequency components which cannot be adequately repre-

sented on a finite grid. Thus, the frequencies beyond the grid wavenumber cutoff are

incorrectly “aliased” to wavenumbers that are resolved (Moin, 2001). The contribu-

tion of aliasing errors is largest at the highest wavenumbers where any energy above

the wavenumber cutoff incorrectly “folds over” into the resolved spectrum. While

these aliasing errors appear to be important only at high wavenumbers, it is of in-

terest to compare them to the SFS force term. Aliasing errors prevent a numerical

method from conserving energy and hence can cause the solution to be unstable, as

shown by Kravchenko & Moin (1997). Aliasing errors can be removed, but this is

computationally expensive, even in spectral codes where the 3/2-rule for dealiasing is

applicable and is relatively straightforward to implement. Lele (1992) suggests a fil-

tering method for dealiasing in physical space though this method also requires extra

computation. Because of this cost and the difficulty of implementation in non-spectral

codes, dealiasing is not often performed in finite-difference codes, even though these

are also affected by aliasing errors. Neglecting to dealias product terms may be ac-

ceptable in finite-difference codes, however, because the effect of aliasing on the total

error may be somewhat reduced in finite-difference schemes, as shown below. We will

compare aliasing errors in the nonlinear term to the SFS forcing, and examine the

error when finite-difference schemes are used.

Figure 4.9 compares spectra of the aliasing error incurred in computing the non-

linear terms to the SFS force. The error is defined as the difference between the

aliased and dealiased calculations for a particular differencing scheme. Dealiasing

is performed using the 3/2-rule in the spectral space calculations. Errors are the

largest for the spectral scheme. For finite-difference schemes, aliasing is reduced be-

cause the modified wavenumbers for finite-difference methods decrease near the cutoff

wavenumber. Finite-differencing errors reduce the amount of aliasing error present,

however they lead to a less accurate representation of the nonlinear terms at higher

wavenumbers, as seen in the previous section.

These results are consistent with Ghosal’s (1996), however the shape and magni-

tude of the spectra are quite different. Figure 4.9 shows that for FGR = 2 the errors
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Figure 4.9: Energy spectra of the aliasing error in the nonlinear term in the divergence
form, computed with spectral, second- and fourth-order finite-difference, and sixth-
order Padé schemes, compared to the SFS force term. Filter-grid ratio = 2; 323

grid.

are larger than the SFS term only at high wavenumbers, as opposed to Ghosal’s Fig. 5

where the aliasing error dominates in the entire range (for FGR = 1). In addition, in

Ghosal’s data the aliasing errors are more severe than the finite-difference errors. In

our case, the aliasing errors are significantly smaller than the finite-difference errors

for FGR = 2. By comparing Fig. 4.10 for aliasing errors to Fig. 4.7 for finite-difference

errors, we see that the global SFS force dominates the global aliasing error for all grid

resolutions. This difference between our results and Ghosal’s may be due to the na-

ture of the dataset used. Even though the total aliasing error is less than the SFS

force, aliasing errors can have an adverse affect on the numerical solution because

they are concentrated at high wavenumbers. It is also in this high wavenumber range

that SFS models may act to extract information to model the subfilter scales.

Like finite-difference errors, aliasing errors can be reduced by increasing the filter-

grid ratio, as product terms are more accurately represented on the grid when the

original field is relatively smooth. The total aliasing errors for different grid sizes and

different filter-grid ratios have been plotted in Fig. 4.11, with aliasing error computed

for the spectral differencing case and the divergence form of the nonlinear force. The

total aliasing error decreases with increasing filter-grid ratio, as more of the motions



4.5. ALIASING ERRORS 65

10
1

10
2

10
−1

10
0

grid wavenumber cutoff

G
lo

ba
l e

rr
or

, n
or

m
al

iz
ed

Spectral
2nd−order FD
4th−order FD
Pade
Exact SFS force

Figure 4.10: Global aliasing error in the nonlinear term in the divergence form com-
puted with spectral, second- and fourth-order finite-difference, and sixth-order Padé
schemes, compared to the SFS force term. Data points are normalized by the total
nonlinear terms and shown at the 83, 163, 323, and 643 grid resolution locations.
Filter-grid ratio = 2.

are smoothed out and product terms are more accurately represented on the grid.

For FGR = 2 and 4, the total SFS force is larger than the aliasing errors; however

for FGR = 1, the aliasing error dominates, and is comparable in magnitude to the

finite-difference error in Fig. 4.8.

In addition to the effects of the finite-difference scheme and the filter-grid ratio

on the aliasing error, Blaisdell et al. (1996) show that the form of the nonlinear

terms can affect aliasing, so that proper choice of the discrete representation of these

terms can reduce aliasing without any removal schemes. To further demonstrate the

effect of aliasing error in the nonlinear terms, we evaluate the nonlinear terms using

the rotational, divergence, convective, and skew-symmetric forms. These forms are

analytically equivalent (see Kravchenko & Moin, 1997):

Rotational: uj

(
∂ui
∂xj
− ∂uj
∂xi

)
+

1

2

∂ujuj
∂xi

(4.2)

Divergence:
∂uiuj
∂xj

(4.3)
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Figure 4.11: Global aliasing error in the nonlinear term (NL) in the divergence form
with spectral differencing, compared to the SFS force term for different filter-grid
ratios. Data points are normalized by the total nonlinear terms and shown at the 83,
163, 323, and 643 grid resolution locations.

Convective: uj
∂ui
∂xj

(4.4)

Skew-symmetric:
1

2

(
∂uiuj
∂xj

+ uj
∂ui
∂xj

)
. (4.5)

In discrete form, however, these expressions may not be equivalent, as this depends

on whether the product rule for differentiation holds numerically.

For dealiased spectral methods, differentiation is exact and therefore satisfies the

product rule, so the four formulations perform identically. The difference in the

formulations without dealiasing can be significant, as seen in Fig. 4.12 for spec-

tral schemes, which shows spurious energy at the highest wavenumbers. For finite-

difference schemes, even when all terms are dealiased the results are different because

of truncation errors. When second-order finite-differences are used, the differences

between these formulations are reduced (not shown) from those in Fig. 4.12, but may

still be significant for numerical stability, so it is desirable to choose a formulation

that gives the least error.

Figure 4.13 shows spectra of aliasing errors for the different nonlinear formulations,
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Figure 4.12: Energy spectra of the nonlinear term with divergence, convective, skew-
symmetric, and rotational formulations with derivatives computed spectrally, but
aliasing error not removed. The dealiased spectrum is also shown. Filter-grid ratio
= 2; 323 grid.

compared to the SFS force. The convective formulation gives the least aliasing error,

followed by the skew-symmetric and divergence forms; the rotational form gives the

highest error. These results are slightly different than those of the Fourier analysis of

Blaisdell et al. (1996) where the skew-symmetric form performs best, followed by the

convective form. However, this is perhaps accounted for by the fact that their results

are for compressible turbulence where the convective term consists of two parts; in

incompressible flow this form reduces to one term because of the continuity condition.

When directly implemented into a spectral LES code, Zang (1991) and Blaisdell

et al. (1996) found the skew-symmetric form to be the preferred scheme because

aliasing errors were minimized. Kravchenko & Moin (1997) also found that the skew-

symmetric form performed best in a finite-difference code LES, while the convective

form led to numerical instability which was linked to the sign of the truncation error.

This poor performance of the convective form is not reflected in the spectra of errors

shown here, indicating that a posteriori tests are needed to evaluate a particular

scheme fully. We do, however, find that our error estimates are comparable to those

of Zang (1991), who found that the aliasing errors from the rotational form are about
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Figure 4.13: Energy spectra of the aliasing error in the nonlinear term for the spec-
trally computed (but not de-aliased) divergence, convective, skew-symmetric, and
rotational formulations, compared to the SFS force term. Filter-grid ratio = 2; 323

grid.

twice as large as those for the convection, divergence and skew-symmetric forms.

Figure 4.14 shows the global error for different grid sizes using different nonlinear

term formulations. For FGR = 2, the global errors from the rotational form are

approximately two times larger than the errors from the other formulations, and are

comparable in magnitude to the total SFS terms.

Overall we observe a similar trend to Ghosal (1996) in analyzing the aliasing

errors, however, the magnitude and shape of the spectra are different. In our case the

aliasing error is concentrated at large wavenumbers and does not dominate the SFS

terms throughout the spectrum as long as the filter-grid ratio is greater than unity.

Aliasing error is greatest for the higher-order finite-difference schemes, and decreases

with an increasing filter-grid ratio. For a non-dealiased finite-difference code, it may

be possible to use a particular formulation of the nonlinear terms to limit aliasing

errors. It can be shown that aliasing errors of the two terms in the skew-symmetric

form help to cancel each other out, so this form is often well-behaved even without

dealiasing (Kravchenko & Moin, 1997). Blaisdell et al. (1996) propose that the skew-

symmetric version of the nonlinear terms eliminates most of the aliasing error, and

hence provides a cheaper alternative to implementing a de-aliasing scheme.
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Figure 4.14: Global aliasing error in the nonlinear term with divergence, convec-
tive, skew-symmetric, and rotational formulations (computed spectrally but not de-
aliased), compared to the SFS force term. Data points are normalized by the total
nonlinear terms and shown at the 83, 163, 323, and 643 grid resolution locations.
Filter-grid ratio = 2.

4.6 Conclusions

Following the approach of Ghosal (1996), the analysis of DNS data presented here

demonstrates some of the issues involved in the numerical representation of nonlinear

terms and SFS terms. Results from our DNS dataset are similar to Ghosal’s statistical

analysis, confirming the need for careful selection of numerical parameters in LES. A

few specific differences were noted.

To ensure that the SFS terms are larger than numerical errors from calculation

of the nonlinear terms, the choice of the filter size is important. Our results indicate

that the filter size should be at least twice as large as the grid spacing for a 6th-order

Padé scheme. For a second-order finite-difference scheme, the filter size should be at

least four times the grid spacing. Because of the effect of the modified wavenumber,

aliasing is less important for finite-difference methods than for spectral calculations;

however, the representation at higher wavenumbers is less accurate because of the

larger truncation errors. More accurate finite-difference methods can be used to

represent the solution at higher wavenumbers better, but dealiasing or a particular
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discretization (e.g. the skew-symmetric form) of the nonlinear terms may then become

necessary.

The results in this chapter are a confirmation of Ghosal’s results for high Reynolds

numbers for flows at moderate Reynolds numbers. The above guidelines for LES are

of course only directly applicable to moderate Reynolds number flows such as the

one considered here. However, the general recommendations that require a specific

filter-grid ratio to limit numerical errors in LES appear to apply to the entire range

of Reynolds numbers, from low-to-moderate Reynolds number engineering flows to

high Reynolds number geophysical flows.



Chapter 5

Turbulent channel flow

simulations∗

This chapter applies the reconstruction modeling ideas presented in Chapter 3 to

small-scale turbulent channel flow simulations. The effects of the grid and discretiza-

tion errors are introduced in the SFS modeling procedure. Simulations are performed

using second- and fourth-order finite-difference codes. A systematic comparison of

the large-eddy simulation (LES) results for different grid resolutions, finite-difference

schemes, and several turbulence closure models is performed. The use of explicit

filtering to reduce numerical errors is compared to results from the traditional LES

approach. Filter functions that are smooth in spectral space are used, as the find-

ings of this investigation are intended for application of LES to complex domains.

Explicit filtering introduces resolved subfilter-scale (RSFS) as well as subgrid-scale

(SGS) turbulence terms. The former can theoretically be reconstructed; the latter

must be modeled. For turbulence models, the dynamic Smagorinsky model, the dy-

namic mixed model, and the new dynamic reconstruction model are all studied. It

is found that for explicit filtering, increasing the reconstruction levels for the RSFS

stress improves the mean velocity as well as the turbulence intensities. When com-

pared to LES without explicit filtering, the difference in the mean velocity profiles is

∗This chapter is a reproduction (with minor modifications) of the paper “The effect of numerical
errors and turbulence models in large-eddy simulation of channel flow, with and without explicit
filtering” by Jessica Gullbrand and Fotini Katopodes Chow (equal contributors), published in the
Journal of Fluid Mechanics, November 2003, Volume 495, pages 323-341 (Gullbrand & Chow, 2003),
c©2003 Cambridge University Press, reprinted with permission.
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not large; however, the turbulence intensities are improved for the explicit filtering

case.

5.1 Introduction

The equations for large-eddy simulation (LES) are obtained by applying a low-pass

filter to the Navier-Stokes equations. This filtering operator divides the flow into

so-called resolved and subfilter-scale (SFS) motions. When the equations are solved

on a discrete grid, a discretization operator is applied to the equations as well, which

further divides the turbulent flow field; the subfilter scales are divided into resolved

SFS and unresolved SFS regions. The unresolved SFS motions are commonly called

subgrid-scale motions (see also the notation used by Zhou, Brasseur & Juneja, 2001).

Figure 5.1 depicts these regions of the flow field which are described further later. The

effect of the resolved subfilter-scale (RSFS) and subgrid-scale (SGS) motions on the

resolved velocity field must be considered. The RSFS contribution can theoretically

be reconstructed, but the SGS stress must be modeled. The filter shape as well as

the filter width and, of course, grid resolution are free parameters in LES.

For engineering purposes, second-order numerical methods are usually used when

performing LES for complex flow fields. In LES the smallest resolved scales are often

used to model the contribution from the unresolved scales. Therefore, it is of great

importance that these scales be resolved to high accuracy. High accuracy LES results

can be achieved by high-order numerical methods (see e.g. Morinishi et al., 1998)

and/or by explicit filtering (Lund & Kaltenbach, 1995). The complexity in imple-

menting high-order methods as well as the computational cost become prohibitive

when studying flow fields in complex geometries. Therefore, the use of explicit filter-

ing may provide a favorable alternative.

In traditional LES solution methods, the computational grid and discretization

operators are considered “implicit” filtering of the Navier-Stokes equations. Using

this approach, there is no need to define a filter function, but neither can the implicit

filter be determined. The only actual filter that may be applied in the simulations is

used in models for the RSFS and/or SGS contributions. One example is the need for a

test filter in the dynamic Smagorinsky SGS model to determine the model coefficient.

In contrast, when explicit filtering is applied in LES, an explicitly defined filter
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function is needed. In this approach, the defined filter is used when calculating the

RSFS contribution. If the dynamic Smagorinsky model (DSM) is used as the SGS

model, an additional filter function (with larger width than the explicit filter) must

also be defined for the test filter in the dynamic procedure. Both the RSFS and

the SGS contributions must be included in the simulations. The differences in the

implementation of the traditional LES and the explicitly filtered LES approaches

might be considered subtle; however, the effect on the LES results is considerable.

The explicit filtering approach has recently been proposed as a method to minimize

the influence of discretization error in finite-difference codes (Lund & Kaltenbach,

1995). All finite-difference approximations have a truncation error that grows with

increasing wavenumber. This truncation error can be reduced or eliminated when

explicit filtering with a filter width larger than the computational grid cell size is

applied (Lund, 1997). Several researchers have investigated explicit filtering in tur-

bulent channel flow. Lund & Kaltenbach (1995) used sharp cutoff filters (in spectral

space) in the homogeneous directions with a second-order finite difference code (the

same code used in this chapter). They concluded that the explicit filtering improved

the accuracy of the LES results; however, mesh refinement without explicit filtering

improved the results at a greater rate. All of their simulations used the DSM with

a cutoff filter, which is not applicable to general geometries. Carati, Winckelmans

& Jeanmart (2001) developed a useful framework for the explicit filtering approach.

They proposed governing equations for LES which carefully distinguish between the

discretization and filtering procedures. These equations are also used here to separate

the RSFS and SGS effects used in explicit filtering. Winckelmans et al. (2001) per-

formed simulations with explicit filtering using a fourth-order finite-difference code

(also used in this chapter). They applied second-order commutative filters in three

dimensions, which introduce commutation errors in the wall-normal direction due

to the stretched grid (Ghosal & Moin, 1995). The explicit filtering approach (with

low-order RSFS reconstruction) did not perform as well as DSM without explicit fil-

tering (with a sharp cutoff test filter), though the authors suggested that higher-order

reconstruction of the RSFS terms could improve the results obtained with explicit

filtering. Gullbrand (2001) performed explicit filtering (also with low-order RSFS

reconstruction) in three dimensions using commutative filters with the DSM in the

same fourth-order finite-difference code. Results without explicit filtering showed
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better agreement with direct numerical simulation (DNS) data, also suggesting that

higher-order reconstruction is needed for the RSFS terms.

In this chapter, we study the influence of numerical errors on the LES results,

as well as the influence of the filtering approach and the reconstruction level on

the turbulence models. The numerical error is studied by performing simulations of

a turbulent channel flow using both second-order and fourth-order finite-difference

codes. The advantage of studying the channel flow is that both sharp cutoff and

smooth filter functions can be used. In this work, the sharp cutoff filter is used

only for comparison purposes, as our aims are to investigate approaches for LES over

complex domains where sharp cutoffs cannot be used. The sharp cutoff is therefore

used only for traditional LES, without explicit filtering. A smooth filter is applied

for LES with explicit filtering. Higher-order reconstruction models for the RSFS

stress are investigated with filters applied only in the homogeneous directions, as

this avoids introducing commutation errors. The effect of three-dimensional filtering

must ultimately be considered, but is left to future work. For turbulence models, the

DSM, the dynamic mixed model (DMM), and the new dynamic reconstruction model

(DRM) are all investigated. The DSM is used as the SGS model in all the simulations

presented here. The DMM is a linear combination of the scale similarity model (SSM)

of Bardina et al. (1983), which acts as the RSFS model, and the DSM. In the DRM,

the RSFS stress is modeled by using an estimate of the unfiltered velocity in the

unclosed term; the SGS stress is again modeled by the DSM.

5.2 Governing equations

The governing equations for incompressible flow are the continuity equation together

with the Navier-Stokes equations, used here in nondimensional form:

∂ui
∂xi

= 0 ,
∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Reτ

∂2ui
∂xj∂xj

. (5.1)

Here ui denotes the velocity, p pressure and Reτ the Reynolds number based on the

friction velocity and the channel half-width. Repeated indices indicate summation.

In computational LES, the governing equations are filtered in space and solved

numerically on a grid. The traditional procedure for LES has been to treat the grid
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Figure 5.1: Schematic of velocity energy spectrum showing partitioning into resolved,
subfilter-scale, and subgrid-scale motions. The numerical error region is also shown.
The grid is indicated by the vertical dashed line, and the filter by the curved dashed
line.

and the discretization operators as the filtering procedure of the governing equations.

Here, we instead follow the approach of Carati et al. (2001) and Winckelmans et al.

(2001) where the filtering and discretization procedures are treated separately. The

discretization operator is represented by a tilde and the filtering operator by an over-

bar. The filter function G is applied to a flow variable f in physical space as

f(x,∆, t) =
∫ ∞

−∞
G(x, x′,∆)f(x′, t)dx′ , (5.2)

where ∆ is the filter width. Thereby ũi denotes a variable on the grid, and ũi denotes

a filtered variable on the grid. Figure 5.1 shows a schematic of a typical energy

spectrum from a turbulent flow. The spectrum can be separated into three parts

(Carati et al., 2001; Zhou et al., 2001). The low-wavenumber portion is well resolved

on the grid and is contained in the velocity ũi. The shaded portion represents RSFS

motions; this region contains filtered information that is still resolved on the grid.

The subdomain between the dotted and solid lines is denoted the numerical error

(NE) region, which is present due to the discretization errors. This region would

not exist if spectral methods were used; in this particular case, the complete RSFS

stress could be recovered. If numerical errors are present, the RSFS motions cannot

be fully reconstructed. Finally, the high-wavenumber portion contains SGS motions
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that cannot be resolved on the grid and must be modeled.

Hence, the LES momentum equations on a discrete mesh are written as

∂ũi
∂t

+
∂ ˜̃ujũi
∂xj

=
∂p̃

∂xi
+

1

Reτ

∂2ũi
∂xj∂xj

− ∂τ̃ij
∂xj

(5.3)

where the turbulent stresses are defined as τij = uiuj − ũiũj. The filtered equations

are not closed due to the nonlinear term uiuj. Properties of the specific filters used

are described in Section 5.4. Note that each term in the equation contains the effects

of discretization, denoted by the tilde operator. In a spectral code, the effect of the

discretization is simply a spectral cutoff filter, where the discretization and filtering

operators clearly commute (i.e., ũ = ũ). (Note that the cutoff filter is more accurately

termed a “cutoff projection”, as it is not reversible. However, we use the term “cutoff

filter” as is commonly done in the literature.) With finite differences, each term in

the governing equations is affected differently by the discretization. The modified

wavenumber effect (Moin, 2001) will damp motions near the grid cutoff, as indicated

in the NE region of Fig. 5.1. Thus the discretization acts as a smooth filter that is

applied to the flow fields (though the exact nature of this smooth filter is unknown).

In this work, we also assume ũ = ũ when finite differences are used. When simulations

are performed using the actual LES code, numerical errors due to the space and time

discretization schemes will interact, making the effects of explicit spatial filtering and

the grid cutoff filter impossible to separate. Conceptually, however, Fig. 5.1 serves to

separate these effects so that we can address each as is appropriate.

Following Carati et al. (2001), the turbulent stresses can be separated into two

parts, τij = Bij + Aij, where

Bij = ũiũj − ũiũj , Aij = uiuj − ũiũj . (5.4)

Aij, which we call the SGS stress, depends on scales beyond the resolution domain

of the LES. Bij, the RSFS stress, depends on the differences between the exact and

filtered velocity fields within the resolution domain. As the filter width increases, the

total turbulent stress term, consisting of the SGS and RSFS terms, will increase. The

RSFS component can theoretically be computed, as an infinite expansion in a series

model for ũi would give the exact form (Yeo & Bedford, 1988; Katopodes, Street
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& Ferziger, 2000b; Stolz, Adams & Kleiser, 2001a). Further discussion concerning

partitioning of the RSFS and the SGS stresses can be found in Carati et al. (2001)

and Winckelmans et al. (2001).

5.3 Resolved subfilter-scale and subgrid-scale

models

When an explicit filter is applied to the Navier-Stokes equations, as in Eq. 5.3 above,

information at the high wavenumbers is damped. In theory, this RSFS information

can be restored exactly by using an inverse filtering operation. Several methods have

been proposed to approximate this inverse filtering operation. Stolz et al. (2001a) use

the van Cittert (1931) iterative method in their approximate deconvolution procedure

to reconstruct the unfiltered velocity field ũi from the filtered field ũi. Chow &

Street (2002) use Taylor series expansions to obtain the unfiltered velocity. These

unfiltered fields, ũi, are then substituted into the expression forBij to obtain the RSFS

reconstruction. The SSM (Bardina et al., 1983) and the tensor-diffusivity model∗

(Leonard, 1974) can be derived from either of these reconstruction procedures by

truncating the series expansions after a specified number of terms (Katopodes et al.,

2000b; Winckelmans et al., 2001). By truncating these series, a model is obtained for

the RSFS term Bij. However, an additional stress term (Aij) is still required to model

the SGS stresses. Note that if the problem domain can be transformed into spectral

space, the filter (if it is smooth) can be exactly inverted, and an exact reconstruction

can be obtained. Explicit filtering is thus of no advantage for reducing numerical

errors when smooth filters are used in spectral methods (Winckelmans & Jeanmart,

2001). If higher-order finite-difference schemes are used, explicit filtering to reduce

numerical errors may also become less important.

In this study, both low-order (the SSM) and higher-order reconstructions (ob-

tained with the van Cittert iterative method) are used to model the RSFS stresses.

In order to make a fair comparison between the RSFS models, the same SGS model

∗Simulations were also performed as part of this research with the second-order code using the
modified Clark (tensor-diffusivity) model (see Appendices A and E, Eq. 6.10, and Winckelmans et al.

(2001)). The results are not presented because the tensor-diffusivity model required a damping term
(for stability) near the wall, and performed similarly with the approximate deconvolution procedure.
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(DSM) is used in all the simulations. The combinations of RSFS and SGS mod-

els used are described below. Tests without explicit filtering are also performed for

comparison purposes.

5.3.1 Dynamic Smagorinsky model

The DSM is a widely-used eddy-viscosity SGS model (Smagorinsky, 1963):

τij = −2ν̃eS̃ij = −2(C∆̃)2|S̃|S̃ij, (5.5)

where νe is the eddy viscosity, ∆̃ the effective grid cell spacing and Sij the strain rate

tensor. The exact definition of ∆̃ is not needed as the total model parameter C∆̃ is

calculated dynamically (Germano et al., 1991) using the least squares approximation

of Lilly (1992). The choice of the explicit filter and the test filter for the dynamic

procedure greatly affects the performance of the DSM, as discussed further below.

The DSM is used in our simulations with and without explicit filtering.

5.3.2 Dynamic mixed model

Low-order reconstruction of the RSFS stresses can be obtained by using the scale-

similarity model proposed by Bardina et al. (1983). The SSM can be derived by

substituting ũi ≈ ũi into the definition of the RSFS stress tensor, Bij. Here the RSFS

stress is modeled by the scale similarity term and the DSM is used as the SGS model,

in a procedure similar to that of Vreman, Geurts & Kuerten (1994):

τij = ũiũj − ũiũj − 2(C∆̃)2|S̃|S̃ij , (5.6)

where the contribution of the SSM is taken into account in the calculation of the

dynamic coefficient. In addition, the test and explicit filters must be carefully applied

in the dynamic procedure, leading to a different form of the test-filtered equations, as

described by Winckelmans et al. (2001). The SSM term is discretized with the same

method as the convective term in each code. Further description of the derivations

of dynamic models is given in Appendix E.
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5.3.3 Dynamic reconstruction model

Higher-order reconstruction of the RSFS stress tensor can be achieved by the iterative

deconvolution method of van Cittert (1931). The unfiltered quantities can be derived

by a series of successive filtering operations (G) applied to the filtered quantities with

ũi = ũi + (I −G)ũi + (I −G)((I −G)ũi) + · · · (5.7)

where I is the identity matrix. The truncation order of the expansion determines the

level of deconvolution, as discussed by Stolz et al. (2001a). Level-n reconstruction

includes the first n+ 1 terms of the series.

The series expansion provides an estimate for the inversion of the filter G. (Section

6.3.4 relates this expansion to the Taylor series expansion derived in Chapter 3.) If G

is positive in Fourier space for all wavenumbers, the exact inverse can be obtained by

simply inverting the filter kernel in wave space. If G crosses from positive to negative

values in wave space at any wavenumber, exact inversion becomes impossible due to

division by zero. Therefore, the series reconstruction over all wavenumbers of such a

filtered field is approximate. The exact reconstruction can only be obtained as long as

the filter kernel is positive in wave space. Hence, it is preferable to choose an explicit

filter function that is positive for at least all the wavenumbers that are represented

in the simulation (see Fig. 5.2 below for the filters used in this work).

The approximate unfiltered velocity, ũ?i (due to the truncated series), is substituted

into the first term (ũiũj) of the RSFS stress which becomes ũ?i ũ
?
j . This reconstruc-

tion was used by Stolz et al. (2001a) who called the RSFS model the approximate

deconvolution model (ADM). Here the ADM is used together with the DSM:

τij = ũ?i ũ
?
j − ũiũj − 2(C∆̃)2|S̃|S̃ij , (5.8)

which we call the dynamic reconstruction model (DRM). The ADM portion of the

DRM is discretized with the same method as the convective term. The ADM with

the DSM was also independently proposed and used as a model by Winckelmans &

Jeanmart (2001) for isotropic decaying turbulence. Reconstruction series of levels five

and ten are used in this study and are denoted DRM5 and DRM10, respectively.
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5.4 Filter functions

In finite-difference methods, the filter in the LES equations is important for limiting

numerical errors. As shown by Ghosal (1996) and Chow & Moin (2003) (see Chap-

ter 4), numerical errors from finite-difference schemes can be larger than the entire

contribution from the turbulence closure term, ∂τij/∂xj. To avoid this problem, the

explicit filter width should be at least twice as large as the cell size for a fourth-order

accurate finite-difference code. For a second-order finite-difference code, these studies

suggest that the filter width should be four times the cell size. In this work, the filter

width in the case of the second-order code is not four times the cell size, but instead

is chosen to be the same as the one used in the fourth-order code. The effect of this

choice on the results warrants further study.

The correct use of the filter is especially important in the RSFS stress models,

particularly in the dynamic procedure which is based on the scale-similarity assump-

tion in the Germano identity (Germano et al., 1991). To compute a quantity such as
̂̃ui in the dynamic procedure, the test filter (‘caret’ or ‘hat’ symbol) must be explicitly

applied. To satisfy scale-similarity, it is required that the hat operator be “similar”

to the overbar operator. Therefore, if the filtering operator (the overbar) is a tophat,

the combined effect of the two (caret and overbar) should also be a tophat filter.

Such an operator can be obtained by following the method of Carati et al. (2001) and

Winckelmans et al. (2001), described below.

A discrete approximation to a tophat filter of twice the cell size can be obtained

by trapezoidal rule integration. In one dimension the filter is

φi = 0.25φi−1 + 0.5φi + 0.25φi+1 . (5.9)

However, the effective filter width of this discrete filter is no longer twice the cell

size, but rather
√
6 times the grid cell size. If Simpson’s rule were used to derive a

discrete version of the tophat filter, the weights would instead be (1/6, 2/3, 1/6), with

an effective filter width of twice the cell size. Despite the inconsistency in the effective

filter width for Eq. 5.9, this filter was chosen because the function goes to zero (in

spectral space) at the grid cutoff and therefore eliminates the highest wavenumber

that could be sustained by the grid (see e.g. Najjar & Tafti, 1996).

To construct an appropriate test filter, it is useful to write the tophat filter in
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Fourier space as G(k) = sin(k∆)/(k∆). The combined effect of the test filter (at

twice the width) and the explicit filter (the overbar) should thus also be a tophat:

Ĝ(k) = sin(2k∆)/(2k∆). The required test filter (acting alone), would therefore be

Ĝ(k) = sin(2k∆)/(2 sin(k∆)) = cos(k∆). (5.10)

If we now transform this back into physical space, we have a discrete filter which

requires only the immediate neighboring values,

φ̂i = 0.5φi−1 + 0.5φi+1 . (5.11)

The combined effect of the overbar and hat filters in physical space is also a tophat,

but over a wider grid stencil, as expected:

φ̂i = 0.125φi−2 + 0.25φi−1 + 0.25φi + 0.25φi+1 + 0.125φi+2 . (5.12)

The filter functions are plotted in Fig. 5.2. Note that Ĝ becomes negative over

the upper half of the resolved wavenumber region. To guarantee similarity between

Ĝ and G this test filter should in fact be accompanied by a sharp cutoff filter at half

the Nyquist frequency so that these negative values are set to zero. This sharp cutoff

filter is indicated in the dynamic procedure described by Winckelmans et al. (2001)

by ũc where c indicates the cutoff filter at the coarser resolution of the test filter. In

the implementation of the dynamic procedure used in this chapter, this coarse cutoff

filter has not been explicitly applied as it is not practical for complex geometries;

simulations performed with or without the coarse cutoff filter showed no discernable

differences.

In this investigation, the same tophat explicit and test filters are used in both

the second- and fourth-order finite-difference codes. The explicit and test filters are

applied only in the homogeneous directions, as is commonly done in channel flow

studies. Though this choice is not entirely self-consistent, it allows a direct comparison

between the second- and fourth-order LES codes without introducing commutation

errors due to filtering in the wall-normal direction over a stretched grid (Gullbrand,

2001). Note that the test filter in Eq. 5.11 is only used in the simulations with explicit

filtering, as done by Winckelmans et al. (2001). When no explicit filter is applied,
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Figure 5.2: Fourier transforms of the explicit and test filters, shown in one dimension.
The explicit filter ( ) goes to zero at k = π/∆x (the Nyquist wavenumber). The
effective test filter ( ) is generated by applying the test filter ( ) to the
explicit filter; the resulting filter crosses zero at k = π/2∆x.

the tophat in Eq. 5.9 is used as the test filter. Also note that in the finite-difference

codes, for both the explicit filtering and the traditional approaches, the filters are

applied only in calculations of the RSFS or SGS terms, and do not appear elsewhere

in the code.

5.5 Solution algorithm

The second- and fourth-order codes represent spatial derivatives on staggered grids

with second- and fourth-order central difference schemes, respectively. In the second-

order code, the convective terms are discretized in divergence form, while in the

fourth-order code, they are in skew-symmetric form (Morinishi et al., 1998; Vasilyev,

2000). In both codes, the equations are integrated in time using the third-order

Runge-Kutta scheme described by Spalart, Moser & Rogers (1991). The diffusion

terms in the wall-normal direction are treated implicitly with the Crank-Nicolson

scheme. The splitting method of Dukowicz & Dvinsky (1992) is used to enforce

the solenoidal condition. The resulting discrete Poisson equation for the pressure is
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solved in the wall-normal direction using a tri-diagonal direct matrix solver in the

second-order code and a penta-diagonal matrix solver in the fourth-order code. In

the homogeneous directions, the Poisson equation is solved using a discrete Fourier

transform in both codes. Periodic boundary conditions are applied in the streamwise

and spanwise homogeneous directions, with no-slip conditions at the channel walls.

A fixed mean pressure gradient is used to drive the flow. The Reynolds number is

Reτ = 395 and the computational domain is (2πh, 2h, πh) in (x, y, z), where h is the

channel half-width, x is the streamwise direction, y the wall-normal direction, and z

the spanwise direction. The computational grid is stretched in the y-direction by a

hyperbolic tangent function

y(j) = −
tanh(γ(1− 2j

N2
))

tanh(γ)
j = 0, ..., N2 (5.13)

where N2 is the number of grid points in the wall-normal (j) direction and γ is the

stretching parameter, which is set to 2.75. The computational codes are compared in

Gullbrand (2000).

5.6 Turbulent channel flow simulations

5.6.1 Effect of grid resolution and numerical error

As one focus of this work is to examine the effect of numerical errors in actual LES,

two finite-difference codes (one second-order and one fourth-order) are used. Because

of the difference in accuracy between the codes, the grid resolution needs to be chosen

carefully to be able to better compare the results. Figure 5.3 shows the effect of in-

creasing grid resolution for the second-order code, using no turbulence closure model.

All results are compared to DNS data obtained using the fourth-order finite-difference

code (using no turbulence model) and the same grid resolution (256,193,192) used by

Moser, Kim & Mansour (1999) for their DNS calculations. (The DNS data from

the fourth-order code were found to be virtually identical to the spectral code DNS

data of Moser et al. (1999).) It is clear that the choice of resolution can significantly

alter the results of the simulation. The results in Fig. 5.3 show a minimum grid

resolution of (81,65,64) where the results do not seem to be largely affected by the
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Figure 5.3: Mean velocity profiles U for different grid sizes for the second-order code
using no turbulence model. : 48x37x36, : 64x49x48, : 81x65x64,

: 96x73x72, and : DNS.

numerical errors. This should be one of the necessary criteria in order to determine

the required grid resolution. Of course as the grid resolution is increased the solution

will eventually approach the DNS results. Due to increased accuracy (compared to

the second-order code), the required minimum resolution for the fourth-order code is

coarser at (64,49,48).

It is expected that for a given resolution, the performance of the fourth-order

code will be better than the second-order code, due to the higher accuracy of the

finite-difference schemes. Figure 5.4 shows results of simulations made with the same

grid resolution (48,37,36) for both finite-difference codes and for the pseudo-spectral

code of Jeanmart & Winckelmans (2002). The pseudo-spectral code uses fourth-order

compact finite differences in the vertical direction and is spectral in the horizontal

directions. The simulations are performed without a closure model, so that the effect

of the numerical errors can be compared. As seen in Fig. 5.3, increasing resolution

(and hence decreasing numerical errors) first reduces the mass flow predicted (mean

velocity profile) in the simulations to a level lower than the DNS results. If the

resolution is further increased, the mass flow increases and approaches the DNS results
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Figure 5.4: Mean velocity profiles for three different LES codes with the same grid
resolution (48,37,36) using no turbulence model. : second-order, : fourth-
order, : pseudo-spectral, : DNS.

from below. Similarly, it is expected that for a given grid resolution, the pseudo-

spectral code will produce the lowest mean velocity profile of the three codes, as it

has the lowest numerical errors (see Fig. 5.4). The fourth-order finite difference code

also predicts a mean velocity profile that is lower than the DNS for this resolution

(but higher than the pseudo-spectral code), however the second-order code does not,

due to the effect of large truncation errors.

Because of the large differences in the profiles in Fig. 5.4, different grid resolutions

are chosen for each finite-difference code to fairly compare results in further tests.

In this way, we attempt to minimize the numerical differences at the outset of the

investigation, though the interaction of these errors with different RSFS and SGS

models is still an issue. To choose the appropriate resolution, simulations with the

DSM using a spectral cutoff test filter with a width of twice the grid cell size were

performed at different resolutions until good agreement was obtained. (Agreement at

the two chosen resolutions can be seen in Figs. 5.5 and 5.6, as described later.) We

use the cutoff filter case as the base case for comparison because this approach does

not involve explicit filtering and thus provides an independent reference.

The grid resolutions for the remaining simulations are therefore as follows. The
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fourth-order finite-difference code resolution is chosen to be (64,49,48), which is one

quarter of the DNS resolution in each spatial direction. This resolution corresponds

to a streamwise grid cell size of ∆x+ = 39, and a spanwise cell size of ∆z+ = 26.

Nondimensional “plus” units are defined as y+ = yuτ/ν, where uτ is the friction

velocity and ν is the kinematic viscosity. The range of the cell size in the wall-normal

direction is 0.4 ≤ ∆y+ ≤ 45. In the simulations using the second-order code, a

grid resolution of (81,65,64) is employed. This resolution corresponds to ∆x+ = 31,

∆z+ = 19 and 0.3 ≤ ∆y+ ≤ 34. Thus the choice of grids for each code corresponds

to the grid size which was shown to not largely be influenced by the numerical errors

for the “no model” tests mentioned previously. The time step used is 1.5× 10−3 and

is the same in both codes. A statistically stationary solution is obtained after 30

dimensionless time units and thereafter statistics are sampled during 15 time units.

The time is normalized with the friction velocity and the channel half-width.

5.6.2 SGS modeling: LES without explicit filtering

For the purpose of comparison, tests are performed using traditional SGS model for-

mulations. These simulations do not use explicit filtering, meaning that the only filter

that is actually applied is the test filter in the dynamic procedure, and this is chosen

to be twice the cell size. In our test cases without explicit filtering, the reconstruction

term (the RSFS stress) is not considered; only the SGS stress is modeled. By using

the tophat filter (which is smooth in spectral space) as the test filter in the dynamic

procedure (see below), it is assumed that the implicit filter is also a tophat; therefore

the RSFS stress should in theory be considered. However, the implicit filter cannot

be determined, meaning that reconstruction of the RSFS stress is questionable.

For the channel flow, the lateral periodic boundary conditions allow the use of

a spectral cutoff filter for the test filter. It is well known (Piomelli et al., 1988)

that the Smagorinsky model performs best when used together with such a cutoff

filter. The difficulty with this filter choice is that it cannot be easily applied to other

geometries. The cutoff filter width in our simulations is twice the cell size, giving the

filter-grid ratio α = ∆/∆g = 2, where ∆ and ∆g are the filter width and grid cell size

respectively. Because filtering is only applied in the x and z directions, the effective

filter-grid ratio squared is α2eff = 42/3. Simulations with the DSM using a tophat



5.6. TURBULENT CHANNEL FLOW SIMULATIONS 87

filter in physical space as the test filter are also performed. The test filter is applied

as in Eq. 5.9; the filter-grid ratio in this case is α =
√
6 and hence α2eff = 62/3 (see

Najjar & Tafti, 1996; Lund, 1997).

Figure 5.5 shows mean velocity profiles from both the second- and fourth-order

finite-difference codes, compared with DNS data. Agreement between the second- and

fourth-order codes for the simulations using the cutoff filter is quite good, indicating

that the chosen resolution for each code is good for comparisons. The agreement

between the second- and fourth-order codes for the reduced (deviatoric) turbulence

intensities for the cutoff filter case is excellent, as seen in Fig. 5.6. The turbulence

intensities are adjusted by removing the trace from each tensor component, as dis-

cussed by Winckelmans, Jeanmart & Carati (2002). Results for the tophat filter are,

as expected, worse than for the spectral cutoff filter. This is due to the absence of the

RSFS component of the total stress, which should be present when a smooth filter

is applied, as discussed further below. Though it is known to perform poorly with

a smooth filter, the DSM is frequently used with the tophat filter because spectral

cutoff filters cannot be applied in domains with general geometries. Note that the

profiles obtained by the second-order code in Figs. 5.5 and 5.6 are slightly closer

than the fourth-order code to the DNS for the tophat filter cases, which is due to

the choice of higher resolution for this code than the fourth-order code. Tests per-

formed using the same resolution (64x49x48) for both codes showed that the results

from the fourth-order code are closer to the DNS data than are the results from the

second-order code. This is expected based on the visible effect of numerical errors in

the comparisons of the codes using no turbulence model, shown in Fig. 5.4, and as

discussed previously in the choice to use different resolutions for each code.

Profiles of the SGS stress τ̃12 over half the channel width are shown in Figs. 5.7

and 5.8 for the fourth- and second-order codes, respectively. The contribution of the

SGS stress is smaller for the second-order code because the simulations are performed

using a higher resolution, meaning that more of the turbulent motions are resolved.

The SGS stress is larger for the tophat filter cases for both codes because the effective

filter width of the tophat is larger (
√
6 compared to 2), which therefore places more

energy into the SGS terms. The predicted SGS stresses are compared to the SGS

contribution calculated from the filtered DNS velocity data. The SGS stress tensor

(τ̃ij = ũiuj − ˜̃uiũj) is calculated a posteriori assuming the implicit filter is a sharp
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Figure 5.5: Mean velocity profiles for the second-order (81,65,64) and fourth-order
(64,49,48) codes without explicit filtering. : fourth-order code, DSM with sharp
cutoff filter, : second-order code, DSM with sharp cutoff filter, : fourth-
order code, DSM with tophat filter, : second-order code, DSM with tophat filter,
and : DNS.

cutoff filter. The cutoff filters for filtering the DNS data are chosen separately to

correspond to the two grid resolutions used: the (64,49,48) grid used for the fourth-

order LES calculations, and the (81,65,64) grid used for the second-order code. No

filters are applied in the vertical direction. The filtered DNS results for τ̃12 shown

in Figs. 5.7 and 5.8 do not provide a clear indication as to the performance of the

LES simulations. This poor agreement is likely due to the assumption of using a

sharp cutoff filter in the DNS calculation of τ̃12. The actual implicit filter cannot be

determined, but is likely closer to a smooth filter function since it is affected by finite

difference errors (due to the modified wavenumber effect).

5.6.3 RSFS and SGS modeling: LES with explicit filtering

To attempt to minimize the influence of discretization errors in finite difference or

finite volume codes, explicit filtering can be used. The difference between the im-

plementation of this approach and that of Section 5.6.2 is in the filters used in the

closure models, and thus the ability to reconstruct the RSFS terms. As this approach



5.6. TURBULENT CHANNEL FLOW SIMULATIONS 89

0 100 200 300
0

1

2

3

0

1

2

3

-6

-4

-2

0

PSfrag replacements

y+

u
′ u

′
v
′ v

′
w

′ w
′

Figure 5.6: Profiles of reduced turbulence intensities in streamwise u′u′, wall normal
v′v′ and spanwise w′w′ directions for the second-order (81,65,64) and fourth-order
(64,49,48) codes without explicit filtering. The trace is removed from each tensor
component. : fourth-order code, DSM with sharp cutoff filter, : second-
order code, DSM with sharp cutoff filter, : fourth-order code, DSM with tophat
filter, : second-order code, DSM with tophat filter, and : DNS.
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Figure 5.7: Profiles of the turbulent stress τ̃12 for the fourth-order (64,49,48) code
without explicit filtering. : DSM with sharp cutoff filter, : DSM with
tophat filter, : DNS (65,49,48).
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Figure 5.8: Profiles of the turbulent stress τ̃12 for the second-order (81,65,64) code
without explicit filtering. : DSM with sharp cutoff filter, : DSM with
tophat filter, : DNS (81,65,64).
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Figure 5.9: Mean velocity profiles for the fourth-order code (64,49,48) with explicit
filtering (tophat) and reconstruction. : DSM, : DMM, : DRM5,

: DRM10, and : DNS.

is geared toward finite-difference methods in complex domains, the filters used must

be smooth; the spectral cutoff filter is not used here in this approach.

We performed several simulations using explicit filtering with increasing levels of

reconstruction for the RSFS stresses. For the first case, the DSM is applied using an

explicit filter of width twice the grid cell size and a test filter of four times the cell

size. The effective filter ratio for the dynamic procedure is chosen to be two, as done

by Winckelmans et al. (2001); the determination of the optimal ratio is left to further

investigations. This first case has no reconstruction terms. Then, reconstruction to

the first level is added by using the DMM, followed by the DRM5 and DRM10 with

five and ten levels of reconstruction, respectively (see Sections 5.3.2 and 5.3.3). Figure

5.9 shows that the mean velocity profiles for the fourth-order code improve compared

to the DNS results as the level of reconstruction increases. The improvement is very

clear in the comparison of the reduced turbulence intensities in Fig. 5.10. However,

the incremental improvement between DRM5 and DRM10 is not large, indicating

that good reconstruction of the unfiltered velocity is most likely already obtained

by DRM5. The differences between the LES results (with DRM5 and DRM10) and

the DNS results are therefore most probably due to numerical errors (see the NE



92 CHAPTER 5. TURBULENT CHANNEL FLOW SIMULATIONS

0 100 200 300
0
1
2

3
4
0
1
2

3
4

-8
-6
-4
-2

0

PSfrag replacements

y+

u
′ u

′
v
′ v

′
w

′ w
′

Figure 5.10: Profiles of reduced turbulence intensities in streamwise u′u′, wall normal
v′v′ and spanwise w′w′ directions for the fourth-order (64,49,48) code with explicit
filtering (tophat) and reconstruction. The trace is removed from each tensor com-
ponent. : DSM, : DMM, : DRM5, : DRM10, and :
DNS.
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Figure 5.11: Profiles of the turbulent stress τ̃12 for the fourth-order (64,49,48) code
with explicit filtering (tophat) and reconstruction. : DSM, : DMM, :
DRM5, : DRM10, and : DNS.

region in Fig. 5.1) and the SGS model used. The total turbulent stress τ̃12 shown

in Fig. 5.11 increases considerably with increasing reconstruction level (though only

slightly between DRM5 and DRM10). For each case, the contribution of the DSM

portion (not shown) of the model is roughly the same, with a peak of around 0.1, so

the increase of the modeled stresses is almost entirely due to the RSFS model. The

turbulent stresses are compared to DNS values calculated by using the definition of

the turbulent stress tensor (τ̃ij = ũiuj− ˜̃uiũj ). The DNS fields are obtained using the

fourth-order code as described previously in Section 5.6.2. The discrete quantities ũi

are obtained from the DNS fields a posteriori by using a sharp cutoff filter chosen to

match the grid resolution used by the second- (81,65,64) and fourth-order (64,49,48)

LES simulations. The explicit filter is then twice the corresponding LES cell spacing;

for each grid size a tophat filter is constructed using the trapezoidal rule for the DNS

fields to match the filter width used in each LES simulation. No filters are applied

in the vertical direction. The turbulent stresses predicted by the DRM show very

good agreement with the stresses calculated from the DNS data. Results for the

second-order code are shown in Figs. 5.12 and 5.13. Turbulence intensities are not

shown for the second-order code as the pattern of improvement is similar to that of

the fourth-order code.
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Figure 5.12: Mean velocity profiles for the second-order code (81,65,64) with explicit
filtering (tophat) and reconstruction. : DSM, : DMM, : DRM5,

: DRM10, and : DNS.
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Figure 5.13: Profiles of the turbulent stress τ̃12 for the second-order (81,65,64) code
with explicit filtering (tophat) and reconstruction. : DSM, : DMM, :
DRM5, : DRM10, and : DNS.
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5.7 Discussion and conclusions

Despite the existing theory and previous attempts at LES using explicit filtering

(Carati et al., 2001; Winckelmans et al., 2001; Lund & Kaltenbach, 1995), the ad-

vantages of this method in practice remain unclear. Because of the extra filtering

operations, the explicit filtering approach is necessarily more computationally expen-

sive than traditional LES. However, explicit filtering offers the potential to limit the

influence of numerical errors from finite-difference schemes on the flow solution.

Figure 5.14 compares results from both the second- and fourth-order codes, with

and without explicit filtering. The models used are the DSM with the tophat filter

(without explicit filtering, as is common in engineering applications) and the DRM10

(with explicit filtering). For both codes, there are only slight differences in the mean

flow profiles for the cases with and without explicit filtering. The largest difference is

seen in the reduced turbulence intensities, shown in Fig. 5.15, where the improvements

due to DRM10 are quite significant. Even the magnitudes of the reduced streamwise

intensities u′u′ for DRM10 are smaller than the DNS values, which is the opposite of

what is usually observed with turbulence closures such as the DSM (Gullbrand, 2001).

Better representation of turbulence intensities is, for example, very important in

applications where accurate prediction of turbulent mixing is required. These results

therefore demonstrate that improvements can be obtained for a given resolution and

code by using explicit filtering and reconstruction.

The implications of these results on LES for engineering applications must be

considered carefully. For engineering flows, traditional LES (without explicit filtering)

is commonly performed with the DSM using a tophat test filter. As shown in this

investigation, this method poorly predicts mean velocity profiles as well as turbulence

intensities. There are several choices that must be made in determining how best to

improve the performance of LES in practical applications.

Choosing the appropriate grid resolution for a simulation is necessarily the first

step, as our results show great discrepancies among simulations with different grid

sizes. Two main concerns must be addressed when selecting the necessary grid reso-

lution. First, the grid should be able to resolve important physical characteristics of

the flow. Second, the grid must also be fine enough to obtain a solution that is not

largely affected by the numerical errors.
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Figure 5.14: Mean velocity profiles for the second-order (81,65,64) and fourth-order
(64,49,48) codes with and without explicit filtering (using tophat filters for both).

: fourth-order code, DRM10, : second-order code, DRM10, : fourth-
order code, DSM no explicit filtering, : second-order code, DSM no explicit
filtering, and : DNS.

The order of accuracy of the finite-difference scheme used also greatly affects the

solution. Note, for example, that the difference between the predicted mean velocity

profiles for simulations using different turbulence models was larger for the fourth-

order than for the second-order code. The higher sensitivity of the fourth-order code

may be due to smaller numerical errors, and/or to the coarser resolution used in

these simulations (compared to the resolution of the second-order code), so that the

turbulence models play a larger role in the fourth-order case.

Finally, explicit filtering can be used as a means to reduce the influence of numer-

ical errors in the high wavenumbers. Increasing the grid resolution improves the rep-

resentation of the important large energy-containing scales. However, the truncation

errors in the high wavenumber portion remain. It is precisely these high wavenumbers

that are often used to represent SGS motions, and it is therefore imperative that they

be represented as accurately as possible.

The extra computational cost due to explicit filtering to obtain increased accuracy

may be worthwhile as LES continues to be applied to increasingly complex geome-

tries and to problems where fine resolutions are not practical. The improvements
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Figure 5.15: Profiles of reduced turbulence intensities in streamwise u′u′, wall normal
v′v′ and spanwise w′w′ directions for the second-order (81,65,64) and fourth-order
(64,49,48) codes with and without explicit filtering (using tophat filters for both).
The trace is removed from each tensor component. : fourth-order code, DRM10,

: second-order code, DRM10, : fourth-order code, DSM no explicit filtering,
: second-order code, DSM no explicit filtering, and : DNS.
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caused by use of the DRM10 (and the DRM5) model may be even more significant at

coarser resolutions. Tests with DRM10 with the second-order code at a resolution of

(48,37,36) show improvements over the DSM with the tophat filter (without explicit

filtering) even with such an under-resolved simulation (not shown). The turbulence

intensities predicted by DRM10 are much better than those from the DSM, even

though the improvement in the mean velocity profile is small.

As this investigation has shown, the explicit filtering approach has the potential

to improve simulation results. RSFS models with different levels of reconstruction

were considered. The LES results with explicit filtering improve as the level of re-

construction is increased. No significant improvements were observed between DRM5

and DRM10, indicating that the reconstruction is most likely adequate at level five

(which is also less expensive computationally); discretization errors and poor perfor-

mance of the SGS model prevent the results from further approaching the filtered

DNS data. The ability of the SGS (or RSFS) model to account for such numerical

errors due to the discretization and finite-difference schemes is of course desirable.

There is, therefore, a great need to develop SGS models that work well in the context

of explicit filtering, where the accuracy of the smallest scales is increased. In addition,

the effect of filtering in all three directions (and the resulting commutation errors)

needs to be investigated.



Chapter 6

Neutral atmospheric boundary

layer flow simulations∗

Standard turbulence closures for large-eddy simulations of atmospheric flow use eddy-

viscosity models and hence ignore the contribution of the resolved subfilter-scale

stresses. These eddy-viscosity closures cannot produce the expected logarithmic re-

gion near the surface in neutral boundary layer flows. Here, explicit filtering and

reconstruction are used to improve the representation of the resolved subfilter-scale

(RSFS) stresses, and a dynamic eddy-viscosity model is used for the subgrid-scale

(SGS) stresses. Combining reconstruction and eddy-viscosity models yields a gener-

alized (and higher-order) version of the well-known mixed model of Bardina et al.;

the explicit filtering and reconstruction procedures clearly delineate the contribution

of the RSFS and SGS motions. A near-wall stress model is implemented to supple-

ment the turbulence models and to account for the stress induced by filtering near a

solid boundary as well as the effect of the large grid aspect ratio. Results for neutral

boundary layer flow over a rough wall using the combined dynamic reconstruction

model and a near-wall stress model show excellent agreement with similarity theory

logarithmic velocity profiles, a significant improvement over standard eddy-viscosity

closures. Stress profiles also exhibit the expected pattern with increased reconstruc-

tion level.

∗This chapter is an expanded version of the paper, “Explicit filtering and reconstruction turbu-
lence modeling for large-eddy simulation of neutral boundary layer flow” by Fotini Katopodes Chow
(the principal author), Robert L. Street, Ming Xue, and Joel H. Ferziger, submitted to the Journal
of the Atmospheric Sciences (Chow et al., 2004a).

99
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6.1 Introduction

In large-eddy simulation (LES) the fluid field is filtered to separate large eddies from

smaller motions; the larger scales are simulated accurately, while the effect of the

smaller, subfilter scales on the large scales is modeled. The presence of the nu-

merical grid divides the subfilter-scale (SFS) motions into resolved and unresolved

portions. The resolved subfilter-scale (RSFS) motions can be reconstructed using

a scale-similarity approach, while the unresolved subfilter-scale (USFS) motions (or

subgrid-scale (SGS)) must be modeled (Gullbrand & Chow, 2003). Both the RSFS

and SGS models must rely on knowledge of the resolved scale behavior alone.

The partitioning of SFS motions into RSFS and SGS portions facilitates an un-

derstanding of the roles of various turbulence model components. Reconstruction

modeling of the RSFS stresses requires the definition and application of an explicit

filter in the LES computation. In contrast, traditional LES treats the discretization

on the grid as an implicit filter operation, but the nature of the filter is both un-

known, and different, for each term in the equations, making reconstruction difficult.

Explicit filtering and reconstruction are especially useful for reducing numerical er-

rors in the context of finite-volume or finite-difference codes; spectral methods do not

require explicit filtering and reconstruction (Winckelmans et al., 2001) but are not

easily applied to flows over complex geometries.

When modeling atmospheric boundary layer flows, the limited grid resolution

throughout the domain places extra importance on the turbulence closure scheme.

Standard turbulence closures for these flows use eddy-viscosity models and ignore the

contribution of the resolved subfilter-scale stresses. Furthermore, at large scales, the

subfilter scales are probably not isotropic, as assumed in eddy-viscosity SFS mod-

els. A well-known problem in such simulations of the atmospheric boundary layer

is the lack of agreement with logarithmic theory in the near-wall region, particu-

larly for neutrally- or stably-stratified flows where the contribution of the SFS model

dominates that of the resolved terms (see the discussions in Sullivan et al. (1994)

and Kosović (1997)). Many schemes make special provisions for the near-wall region

(see e.g. Sullivan et al., 1994; Andren et al., 1994).

In this chapter, we examine several different SFS model approaches for explicitly

filtered LES (Lund & Kaltenbach, 1995; Gullbrand & Chow, 2003) of high Reynolds
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number flow over a rough wall. The goal is to learn what logical steps and pro-

cedures are required for subfilter-scale modeling to bring the simulated flow fields

into agreement with theoretical expectations in the near-wall region. We examine

a specific test case: the neutral, rotation-influenced, large-scale boundary-layer flow

considered by Andren et al. (1994). A state-of-the-art atmospheric mesoscale and

small-scale simulation model is used, namely, the Advanced Regional Prediction Sys-

tem (ARPS) (Xue et al., 1995, 2000, 2001). ARPS is a finite-difference LES-capable

code designed for flow over irregular terrain, so spectral methods and sharp Fourier

cutoffs in filters are not viable options. The enhancements to the code are those

associated with the new subfilter-scale models (see also Chow & Street (2002)).

Gullbrand & Chow (2003) (Chapter 5) presented small-scale (low Reynolds num-

ber) turbulent channel flow simulations that showed that explicit filtering and recon-

struction methods (using the dynamic reconstruction model, DRM) have the potential

to reduce numerical errors in finite-volume and finite-difference formulations of LES

models. Combining reconstruction and eddy-viscosity models yields a generalized

(and higher-order) version of the well-known mixed model of Bardina et al. (1983);

the explicit filtering and reconstruction procedures delineate clearly the contribution

of the RSFS and SGS motions.

In this work, we use a similar approach for simulations of the large-scale (high

Reynolds number) neutral boundary layer where the bottom boundary is rough and

the top boundary is free slip. This seemingly small distinction between a smooth

surface and a rough one has very large consequences. A rough bottom boundary

requires approximate boundary conditions (e.g. specifying a log law). We also intro-

duce three-dimensional filters so that our approach is general enough for flow over

complex terrain where horizontal planar averages are not applicable. To the authors’

knowledge, explicit filtering and reconstruction have not previously been applied to

large-scale flows over rough surfaces.

The RSFS closure models implemented here include the Taylor series expansion

subfilter-scale turbulence model of Katopodes et al. (2000a,b) (Chapter 3) and the

approximate deconvolution approach of Stolz & Adams (1999). We use both of these

series expansion models with the dynamic eddy-viscosity model of Wong & Lilly

(1994) to represent SGS motions; these are the components of our dynamic recon-

struction model (DRM). These dynamic series models require augmentation near the
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lower boundary, so the near-wall shear stress term of Brown et al. (2001) is included

to account for the stress induced by filtering near a solid boundary and for the effect

of the large grid aspect ratio typically found near the boundary (Dubrulle et al., 2002;

Nakayama & Sakio, 2002).

The following sections summarize the framework for construction of a hybrid, or

mixed, LES SFS closure model using separate RSFS and SGS components. The goal

is to create a robust class of SFS models for use over rough boundaries. We then

describe the implementation of the chosen models and results from simulations of the

neutral boundary layer. The results using the combined DRM and near-wall stress

models show excellent agreement with similarity theory logarithmic velocity profiles,

which is a significant improvement over standard eddy-viscosity closures.

6.2 Decomposition of subfilter-scale stresses

To facilitate our understanding of the requirements in SFS modeling and especially

to improve turbulence models in the near-wall region, it is useful to consider veloc-

ity partitioning schemes such as those of Carati et al. (2001), Zhou et al. (2001),

and Hughes et al. (2001a,b). Figure 6.1 shows a schematic of a typical energy spec-

trum from a turbulent flow (this is the same as Fig. 5.1 in Chapter 5; it is repeated

here for clarity of presentation). The application of a filter (which is smooth in wave

space) and a discretization operator (needed to solve the LES equations on a discrete

grid) separates the spectrum into three parts. The low wavenumbers are filtered and

well resolved on the grid. They are contained in the velocity ũ, where the tilde oper-

ator represents the effect of discretization and the overbar an explicit smooth filter.

The middle portion (shaded) represents subfilter-scale motions that are between the

filter and grid cutoffs and hence resolvable on the grid. These resolved subfilter-scale

motions can theoretically be reconstructed by an inverse filter operation. However,

reconstruction is limited by numerical errors (NE) that increase near the grid cutoff

due to the modified wavenumber effect (Moin, 2001). The portion to the right of the

vertical dashed line contains subgrid-scale motions that cannot be resolved on the

grid and must be modeled.

ARPS employs the spatially filtered compressible nonhydrostatic Navier-Stokes

equations. For the results in this chapter, ARPS was operated in a quasi-incompressible
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Figure 6.1: Schematic of velocity energy spectrum showing partitioning into resolved,
subfilter-scale, and subgrid-scale motions. The numerical error region is also shown
above the dotted line. The grid is indicated by the vertical dashed line at wavenumber
kg (corresponding to the minimum resolvable wavelength), and the explicit filter by
the curved dashed line. Same as Fig. 5.1.

mode (Xu et al., 1996). Further details are given in Section 6.5.1. Using the notation

defined above, the LES governing equations are (given here again for the reader’s

convenience)

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1

ρ

∂p̃

∂xi
− gδi3 + εimnfnũm −

∂τ̃ij
∂xj

(6.1)

∂ũi
∂xj

= 0 (6.2)

where viscous terms have been neglected. Here ũi are the velocity components, p̃

the pressure, ρ the density, and f the Coriolis parameter. While the discretization

effects are different for every term in the equation (due to the various finite-difference

schemes used), the same explicit filter is applied to all variables. Further details on the

equations used by ARPS are given in Appendices C and D and in Xue et al. (2000). It

is assumed that the filtering operation commutes with the spatial derivatives, which

is true for a spatially homogeneous filter. Some error is introduced if this is not so

(Ghosal & Moin, 1995).
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We define the total SFS stress as

τij = uiuj − ũiũj . (6.3)

Note that when the SFS stress appears in the filtered and discretized Navier-Stokes

equations, it appears as ∂τ̃ij
∂xj

, where the tilde indicates the added effect of the dis-

cretization (which is essentially a de-aliasing step as well (Chow & Moin, 2003)). The

full turbulent stress can be decomposed into resolved and unresolved portions:

τSFS = τij = uiuj − ũiũj = (uiuj − ũiũj)︸ ︷︷ ︸
τSGS

+(ũiũj − ũiũj︸ ︷︷ ︸
τRSFS

) . (6.4)

The first pair of terms on the right-hand side are the subgrid-scale stresses, τSGS.

They depend on scales beyond the resolution domain of the LES, and contain the

unclosed nonlinear term uiuj which must be modeled. The last pair of terms are

the filtered-scale stresses, τRSFS, which depend on the differences between the exact

and filtered velocity fields within the resolution domain. This resolved subfilter-scale

component, τRSFS, can theoretically be reconstructed because it is a function of ũi

which can be obtained by deconvolution. Note that in a continuous domain, an infinite

expansion in a series model for τRSFS would give an exact solution (Katopodes et al.,

2000b). Likewise, τSGS would be zero in a continuous domain, since there would be

no contribution from subgrid-scale effects. In a discrete domain, the contribution of

τSFS, and thus τSGS, increases with decreasing grid resolution.

Currently available SGS models do not represent the true SGS motions well. It is

hoped that by reconstructing the RSFS, the overall representation of the SFS stress

will be improved, as the SGS contribution will decrease overall. However, near a

rough wall, eddy sizes decrease much faster than any grid stretching, and the bulk of

the stress contribution comes from SGS terms (Sullivan et al., 2003). In general, the

total stress is given by

τtotal = τResolved + τRSFS + τSGS . (6.5)

Because eddies scale roughly as distance from the boundary and the filter and grid

cutoffs are fixed, as we approach the wall (z → 0), it must be that τResolved → 0 and
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τRSFS → 0 because there are no eddies in their respective spectral areas and all of the

eddies are subgrid, so τtotal → τSGS as z → 0. (Here and in subsequent chapters, z is

the vertical coordinate.) The stress on the wall is given by a wall model such as the log

law. Thus τSGS supports the total stress at the wall, suggesting the use of a specific

near-wall stress model which represents the stress induced by the rough boundary.

τSGS may be small away from the wall, depending on the grid discretization and the

turbulent processes occurring in the flow. There could perhaps be a unified approach

to τSGS over the whole domain, but we consider separate near-wall stress and general

SGS models in this work.

6.3 Reconstruction models: series expansion

approach

Using this framework for the turbulence closure, the RSFS and SGS components can

be modeled separately. We first focus on the RSFS components, which can be recon-

structed in terms of the resolved velocity. Several methods have been proposed to

represent such subfilter-scale motions. Bardina et al. (1983) made a seminal contri-

bution by introducing the scale-similarity model. Scale-similarity models create an

approximation to the full velocity field to estimate the RSFS stress. In Bardina’s

model, the discrete full velocity is approximated by the filtered velocity, ũi ≈ ũi, to

obtain τRSFS ≈ ũiũj − ũiũj.
Later models have included those of Yeo & Bedford (1988), Shah & Ferziger

(1995), Geurts (1997), Stolz & Adams (1999), Zhou et al. (2001), and Dubrulle et al.

(2002) (see the review of Domaradzki & Adams (2002)). Here, we focus on approaches

using Taylor series expansions (Katopodes et al., 2000b) and the van Cittert iterative

method used in the approximate deconvolution model of Stolz et al. (2001a).

6.3.1 Recursive Taylor series expansions

For the stress term τRSFS, which can be expressed in terms of the resolved velocity, we

have first implemented the series model of Katopodes et al. (2000a,b) (see Chapter

3). This model uses successive inversion of a Taylor series expansion to express the

unfiltered (but resolved) velocity in terms of the filtered velocity. Using an isotropic
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Gaussian filter, the expansion reduces to

ũi(x, y, z) = ũi(x, y, z)−
∆2f
24
∇2ũi +

∆4f
1152

(
∂4ũi
∂x4

+
∂4ũi
∂y4

+
∂4ũi
∂z4

)

+
5∆4f
1728

(
∂4ũi
∂x2∂y2

+
∂4ũi
∂y2∂z2

+
∂4ũi
∂x2∂z2

)
+O(∆6f ) , (6.6)

to fourth order in the explicit filter width, ∆f . The expansion can be extended to

an arbitrary order of accuracy by including more terms in the series, though these

become cumbersome to compute. The approach can similarly be applied to the scalar

transport equation (see Appendix B or Katopodes et al. (2000a)).

6.3.2 Approximate deconvolution method

Higher-order reconstruction of the RSFS stress tensor can also be achieved by the

iterative deconvolution method of van Cittert (1931). This reconstruction is used

by Stolz & Adams (1999) and Stolz et al. (2001a) who call the RSFS model the

approximate deconvolution model (ADM). The unfiltered quantities can be derived

by a series of successive filtering operations (G) applied to the filtered quantities with

ũi = ũi + (I −G) ∗ ũi + (I −G) ∗ ((I −G) ∗ ũi) + · · · (6.7)

where I is the identity operator, and G is the explicit filter. This expansion can

also be extended to an arbitrary order of accuracy by including more terms in the

series, though it is not immediately obvious what the order of magnitude of the next

set of terms is. Level-n reconstruction includes the first n + 1 terms of the series.

Computation of higher-order terms is straight-forward, as it simply requires repeated

application of the same filter operator.

6.3.3 Generation of the τRSFS models

We derive models for τij by substituting a series expansion for the reconstructed

velocity (ũ?i ) directly into Eq. 6.4 to obtain

τRSFS = ũ?i ũ
?
j − ũ?i ũ?j . (6.8)
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The series expansions for ũi could also be substituted directly into the filtered advec-

tion terms of the filtered Navier-Stokes equations, without moving the filtered terms

to the right-hand side. This was done by Gullbrand & Chow (2003) (Chapter 5)

and Stolz et al. (2001a), while the SGS contribution was added to the right-hand side

as usual. In our implementation, we have both the series expansions and the SGS

models on the right-hand side for ease of implementation in ARPS.

For the ADM approach, nothing further is required. In the Taylor series approach,

we expand Eq. 6.8 to derive RSFS models of arbitrary order of accuracy in the

(isotropic) filter width, ∆f , giving (to fourth order):

τRSFS = ũiũj − ũiũj −
∆2f
24
ũi∇2ũj −

∆2f
24
ũj∇2ũi

+
∆2f
24
ũi∇2ũj +

∆2f
24
ũj∇2ũi . (6.9)

The first two terms are analogous to the Leonard terms in the SFS stress; the higher-

order derivative terms can be shown to be dissipative (Clark et al., 1977). To second

order in the filter width, Eq. 6.9 reduces to the Bardina scale-similarity model, as

does the ADM at lowest order. An anisotropic tophat filter is used in the simulations,

though an isotropic filter ∆f is shown here for simplicity. Other spatially compact

filters give similar results to the Gaussian filter used above, with a change in the

expansion coefficients.

The series model in Eq. 6.9 can also be written as

τRSFS =
∆2f
12

∂ũi
∂xm

∂ũj
∂xm

, (6.10)

which is equivalent to Eq. 6.9 to fourth order in the filter width (see Katopodes et al.

(2000b)). Equation 6.9 is similar to the model proposed by Clark et al. (1977) (also

known as the tensor-diffusivity model) but with an extra filter. This modified Clark

model is considerably simpler than Eq. 6.9 to implement numerically, so we later

adopt this as one of our models for τRSFS. (The original forms in Eq. 6.9 were also

implemented to fourth order, but proved to be too cumbersome numerically to be

useful.)

Vreman et al. (1996) found that a mixed model with the original Clark model
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performed well for a small-scale temporal mixing layer. Winckelmans et al. (2001)

performed a channel flow simulation using the standard Clark model (or tensor dif-

fusivity model) together with the dynamic Smagorinsky model and found that the

Clark portion needed to be damped near the wall. Iliescu & Fischer (2003) suc-

cessfully used the filtered Clark model (to represent the entire turbulence term) in

a channel flow. All of these studies considered small-scale flow cases where viscous

motions could be resolved near the wall, which is not possible in the atmospheric

boundary layer. In the rough-wall flow considered here, the viscous sublayer is not

resolved and the SFS stresses do not go to zero at the wall. The behavior of the

modified (filtered) Clark model near the wall is therefore acceptable. The ADM has

been used in several flow simulations; it has performed well in simulations of small-

scale incompressible channel flows (Stolz et al., 2001a), and compressible flows, e.g.

shock-turbulent-boundary-layer interaction (Stolz et al., 2001b).

6.3.4 Equivalence of Taylor series and approximate

deconvolution approaches

The Taylor series reconstruction method can easily be related to the van Cittert itera-

tive method used in the approximate deconvolution method. For example, Appendix

B of Stolz et al. (2001a) shows how the tensor-diffusivity model can be derived from

the ADM. Using finite-difference representations, it is also easy to show the equiva-

lence of these two reconstruction approaches. We consider the Taylor series approach

to fourth-order in the filter width, in one dimension, and substitute second-order

finite-difference forms:

ũ = ũ− ∆2f
24

∂ũ

∂x
+O(∆4f ) (6.11)

ũ?i ≈ ũi −
∆2f
24

ũi+1 − 2ũi + ũi−1
∆x2

(6.12)

≈ 4

3
ũi −

1

6
ũi+1 −

1

6
ũi−1 (6.13)

where we have taken ∆f = 2∆x, and the subscripts indicate discrete values (in this

section only).
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Now we consider the ADM with n = 1 using a 2∆x tophat filter approximated

using the trapezoidal rule:

ũ = ũ+ (I −G) ∗ ũ+ · · · (6.14)

ũ? ≈ 2ũ− ũ (6.15)

≈ 2ũi − (
1

4
ũi−1 +

1

2
ũi +

1

4
ũi+1) (6.16)

≈ 3

2
ũi −

1

4
ũi+1 +

1

4
ũi−1 (6.17)

Alternatively, the Simpson’s rule approximation to the tophat filter gives

ũ? ≈ 4

3
ũi −

1

6
ũi+1 +

1

6
ũi−1 (6.18)

which is identical to Eq. 6.13.

A difference in implementation arises when the reconstructed velocities are sub-

stituted back into the RSFS stress expressions. In the Taylor series approach, terms

of fourth-order or higher are explicitly disregarded, e.g. in the computation of the

product terms. That is, we are careful to maintain the order of the final expres-

sion even after it has been substituted into τij. Discretization is applied only after

the final form has been obtained. When the ADM reconstruction terms are used,

the discretely reconstructed velocities as in Eq. 6.18 are substituted directly into the

RSFS expression. Therefore, higher-order terms are implicitly contained in the RSFS

expressions.

Even though we use the trapezoidal representation in our implementation because

of the better properties of the discrete filter (Gullbrand & Chow, 2003), we observe

that the difference in the ADM (n = 1) vs Taylor series (fourth-order) approaches

are in the fourth-order truncation terms. The Taylor series expansions more easily

preserve the desired order of the reconstruction, but the ADM approach is much

simpler to implement numerically.
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6.3.5 Properties of the reconstructed τRSFS

A few final observations about both reconstruction methods, Eqs. 6.6 and 6.7, are

worthwhile. First, neither model has parameters other than the filter width and the

number of terms retained in the series, and no assumptions are made about the form

of the RSFS motions. The models should thus be able to capture anisotropic mo-

tions better than eddy-viscosity models. Scale-similar models are also invariant under

Galilean transformations (Speziale, 1985), and they exhibit correct near-wall behav-

ior (Sarghini et al., 1999). Their scale-similarity properties have desirable effects in a

priori tests (Katopodes et al., 2000b; Stolz et al., 1999a). Furthermore, the evolution

equation developed by Katopodes et al. (2000b) (see Eq. 3.12) for the approximate

τij indicates that these subfilter-scale stresses are influenced by buoyancy, Coriolis,

diffusion, pressure, and advection terms, just as the resolved velocities are. Thus,

the expressions in Eqs. 6.9 and 6.10 for τij capture the effects of all relevant physical

mechanisms, to fourth order in the filter width.

Second, series expansion models can can use any smooth filter, keeping in mind

certain guidelines. The filter function G is applied to a flow variable f in physical

space as

f(x,∆f , t) =
∫ ∞

−∞
G(x, x′,∆f )f(x

′, t)dx′ , (6.19)

which is a Fredholm equation of the first kind (see Chapter 18 of Press et al. (1992)).

A unique solution can exist, but the problem is often ill conditioned, so that any error

made in computing the coefficients of the series solution causes a growing error as the

number of terms is increased. If G is positive in Fourier space for all wavenumbers, the

exact inverse can be obtained by simply inverting the filter kernel in wave space. If G

crosses from positive to negative values in wave space at any wavenumber, division by

zero makes exact inversion impossible. Carati et al. (2001) examined the convergence

of the Taylor-series based expansion of Yeo & Bedford (1988) and Leonard (1997);

they demonstrated (without a concrete mathematical proof) an increase in correla-

tion with increasing reconstruction of the stress tensor compared to direct numerical

simulation (DNS) values, therefore providing an informal proof of convergence. The

contour plots in Fig. 3.8 also showed that including more terms in the series ex-

pansion improves the appearance of the velocity field (within the limitations of the
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discrete grid). As described by Domaradzki & Adams (2002), difficulties with the ex-

act inversion procedure are avoided by simply attempting to obtain an approximate

deconvolution and not an exact one. The series reconstructions given by Eqs. 6.6

and 6.7 over all wavenumbers of such a filtered field are approximate. The exact

reconstruction can only be obtained as long as the filter kernel is positive in wave

space and numerical errors are kept to a minimum. Hence, it is preferable to choose

an explicit filter function that is positive for at least those wavenumbers represented

in the simulation, e.g. the tophat filter. It is also important that the filter width be

at least twice the size of the grid spacing, otherwise discretization errors will be as

large as the effect of the SFS model (Ghosal, 1996; Chow & Moin, 2003) (see Chapter

4).

The subfilter-scale modeling approach described here could accommodate a com-

muting filter such as those developed by Vasilyev et al. (1998), which would allow im-

plementation of this model with higher-accuracy numerical schemes and would avoid

commutation errors (for non-uniform grids). The more a smooth filter approaches a

sharp cutoff filter, the less are the benefits for reducing numerical errors, and the less

wave space is available for reconstruction; however, the use of higher-order filters is

compatible with the use of higher-order schemes which have fewer numerical errors.

The sharp-cutoff filter is ill-suited to velocity estimation methods, including the series

expansion model presented here. This is clearest if we imagine using a cutoff filter in

the van Cittert method; if ũ = ũ (where the overbar temporarily is used to denote

the cutoff filter), the expansion in Eq. 6.7 would yield ũ?i = ũ, and the RSFS stress

would be zero.

Finally, we note that the series expansions for the RSFS terms in the filtered

Navier-Stokes equations introduce higher-order derivatives, thereby requiring higher-

order boundary conditions for the momentum equations. This problem is usually

circumvented by applying no-slip boundary conditions repeatedly. No slip essentially

applies inverse mirror conditions at solid boundaries; ∂u/∂x can be extended to the

ghost cell beyond the physical boundary, then ∂2u/∂x2 can be computed at the wall

and extended by symmetry conditions, etc. In our large-scale simulations, the bottom

boundary is rough, which overwhelms any attempt to apply truly no-slip conditions

at the wall; the wall stress is prescribed and higher-order derivatives do not need to

be calculated on the wall. The filtering procedure near the wall is described in further
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detail later. An alternative solution is to reduce the order of the series expansion near

the wall, but the RSFS portion tends towards zero at the wall regardless (see Section

6.2).

In summary, the series expansion representations of the RSFS stresses are theo-

retically excellent. They perform well in a priori tests and can be used up to any

order of accuracy desired. However, interaction with numerical errors in a posteriori

tests is not easy to predict. Corresponding results are examined in the later sections.

In the next section, we describe approaches to modeling SGS motions, which become

increasingly important at coarse grid resolutions such as those present in atmospheric

boundary layer flow simulations.

6.4 SGS and wall models

The problem of representing the RSFS stresses has essentially been solved. Aside from

the issues that arise because of numerical discretization errors in the numerical model

and in the reconstruction procedure itself, the above reconstruction methods are exact

to within the truncation error. Unfortunately, the turbulence closure problem remains

in the SGS terms. Equation 6.4 still has the unclosed term uiuj in the SGS portion

of the total SFS stress. The interaction of the SGS and RSFS motions is also hard

to predict and may create errors that limit the reconstruction as well.

Carati et al. (2001) suggest that there is a separation of scales of sorts between

the resolved component and the subgrid component of the velocity field (see Fig. 6.1)

that perhaps makes an eddy-viscosity model the best choice for the SGS motions.

However, they find very poor correlations between eddy-viscosity model quantities

and those calculated from DNS data. For lack of a better framework, a simple eddy-

viscosity form is also assumed in this work for modeling the unclosed term:

τSGS = −2νT S̃ij , (6.20)

where νT is the eddy viscosity, and S̃ij = (1/2)(∂ũi/∂xj + ∂ũj/∂xi) is the resolved

strain rate tensor. The closure problem shifts to determining the best representation

for νT . Despite the known shortcomings of this class of models, they are convenient
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to use when energy transfer to the subgrid scales is desired. The variations of eddy-

viscosity models are too numerous to describe them all. We focus on those models

we have chosen for our study. These particular SGS models have been used before to

represent the complete SFS stress, but none have been previously used with explicit

filtering and reconstruction in large-scale flows.

6.4.1 Smagorinsky-based eddy-viscosity models

One of the most commonly used eddy-viscosity models is the Smagorinsky model

(Smagorinsky, 1963), which assumes

νT = (CS∆g)
2(2S̃ijS̃ij)

1/2 , (6.21)

where CS is the Smagorinsky coefficient, and ∆g is the grid spacing. The modified

Smagorinsky model (which accounts for stratification) is often used in atmospheric

applications; the scheme is often referred to as Smagorinsky-Lilly scheme (Lilly (1962),

see also Xue et al. (2000) for implementation within ARPS):

νT = (CS∆g)
2


S̃

2
− 1

Pr

g

θ̃

∂θ̃

∂z



1/2

(6.22)

where Pr is the turbulent Prandtl number, g is gravitational acceleration, and θ̃ the

potential temperature. If the argument of the square root becomes negative, νT is set

to zero.

The Smagorinsky model has several drawbacks, especially near the surface, where

it overpredicts the stresses. All eddy-viscosity models fail to allow for backscatter of

energy from small to large scales. Atmospheric measurements show that backscatter

is present near the surface and should be included in LES turbulence closure schemes

(see Porté-Agel et al., 2001; Sullivan et al., 2003). Correlations from a priori tests

show that the eddy-viscosity stress tensors are not aligned with calculations from DNS

data (Katopodes et al., 2000b). Furthermore, Mason & Thomson (1992) showed that

the failure of the Smagorinsky model near the surface could not be cured by increasing

grid resolution. There will always be a region near the rough bottom boundary

where the flow is under-resolved. Therefore, several modifications and alternatives to
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improve performance near the surface have been proposed.

Sullivan et al. (1994) use a two-part Smagorinsky eddy-viscosity model consisting

of the mean and fluctuating strain rate in an attempt to correct the near-wall behavior

of the original model. Neutral and slightly buoyant flows simulated with this two-

part model show significant improvements over the standard Smagorinsky model;

however the model requires specification of a parameter γ to adjust the traditional

Smagorinsky coefficient and control the contribution of the fluctuating term as a

function of distance from the wall. The model does not allow for energy backscatter

near the surface and it uses a planar average (possible only in idealized test cases) to

separate the fluctuating and mean quantities.

Andren (1995) performed weakly-stratified boundary layer simulations using the

SGS model of Sullivan et al. (1994). Neutral boundary layer tests using this SGS

model showed improvements similar to those obtained from the stochastic backscatter

model of Mason & Thomson (1992), but without the increased computational cost.

Ding et al. (2001) modified the model of Sullivan et al. (1994) by assuming that the

total stress is linear. This artificial linear “forcing” was applied for the bottom 20% of

the boundary layer and produced stress profiles that look overly constrained. None of

the above implementations modified the heat flux parameterization though the same

principles should apply there.

6.4.2 Other non-dynamic eddy-viscosity models

Kosović (1997) developed a nonlinear SGS model which improved predictions of the

nondimensional shear in a neutrally-stratified boundary layer flow. The model is

based on constitutive theory and requires three (dependent) parameters; it assumes

locally isotropic equilibrium turbulence and a -5/3 scaling law for the energy spec-

trum. Filtering was applied only in homogeneous directions using a cutoff filter with

spectral methods, so his proposed nonlinear model is truly an SGS model with no

reconstruction necessary (if we neglect the effect of finite-differences errors in the ver-

tical). Given the improvements that were obtained, it would be interesting to explore

the use of this nonlinear SGS model in a finite-difference code using explicit filtering

together with a reconstruction model to account for the RSFS stress; this is left to

future work.
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Other recent SGS models include the multi-scale approach of Hughes et al. (2001a),

where a small-scale eddy viscosity gives good results in small-scale flows. Vreman

(2003) showed that the small-scale eddy-viscosity model of Hughes et al. (2001a) can

be reformulated in terms of a hyper-viscosity model, which can be used with a scale-

similarity model. Finally, Domaradzki & Loh (1999) presented a velocity estimation

method not for the RSFS stress, but for the SGS stress; the method uses a deconvo-

lution step followed by a nonlinear step to produce higher-wavenumber motions using

a twice finer mesh. None of these methods has been used in rough-walled flows.

6.4.3 Dynamic Smagorinsky model

The standard Smagorinsky model requires the use of a pre-determined coefficient, CS.

An alternative to the above approaches is the dynamic Smagorinsky model (DSM),

where the Smagorinsky coefficient CS is determined automatically by applying the

same models at the test filter level (Germano et al., 1991). The DSM is widely-used

as the eddy-viscosity SGS model in small-scale turbulence studies (see e.g. Germano

et al., 1991; Meneveau & Katz, 2000). The DSM has been used with explicit filtering

in small-scale flows by Winckelmans et al. (2001) and Gullbrand & Chow (2003); this

requires special attention to the application of the test filters.

Applications of dynamic models to high Reynolds number flows have been few.

Balaras et al. (1995) used the dynamic Smagorinsky model in simulations of high

Reynolds number channel flow with rough walls (though still at laboratory scales).

Three-dimensional test filtering was used except at the wall cells, where the test filter

was applied only in the homogeneous (wall-parallel) directions. The final dynamic

coefficient was averaged over the entire horizontal plane at each vertical level. The

authors mention that the dynamic procedure was sensitive to the interpolation pro-

cedures applied in the staggered grid system. Esau (2004) simulated the large-scale

neutral atmospheric boundary layer using the DSM and the dynamic mixed model

(DMM) of Zang et al. (1993) with some improvement over the standard Smagorinsky

model. A finite-difference code was used, but filtering was applied only in the hori-

zontal directions. Sensitivity to numerical errors in the dynamic procedure was also

observed.
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A problem with the formulation of the standard dynamic eddy-viscosity model (Ger-

mano et al., 1991) is that it assumes that the coefficient is scale invariant. However,

when the flow is under-resolved, especially near the wall, this is no longer true. Porté-

Agel et al. (2000) developed a scale-dependent dynamic Smagorinsky model to ac-

count for the near-wall region, where motions are under-resolved. When applied to

a neutral atmospheric boundary layer, they achieved improved logarithmic velocity

profiles, but at the cost of an extra filtering step in the dynamic procedure and

an empirical function for the scale dependence. Test filtering was only performed

in the horizontal (homogeneous) directions, thereby eliminating the need to spec-

ify unknown boundary conditions at the wall. They used spectral methods in the

horizontal directions and spectral cutoff filters, which are inapplicable to flows over

complex geometries. The scale-dependent model also requires a scaling function β

and application of a second test filter in the dynamic procedure. This model was not

considered in the current work because of these limitations.

6.4.4 Dynamic Wong-Lilly model

Due to sensitivities of the DSM to the bottom boundary condition (see Section 6.5.2),

as well as for ease of implementation, we instead use the dynamic model of Wong &

Lilly (1994), who simulated the convective boundary layer. Wong & Lilly (1994)

present a simplified base model which require no calculations of S̃ij during the dy-

namic procedure. Instead, the base model is derived from Kolmogorov scaling, which

expresses the eddy viscosity as

νT = C2/3∆4/3ε1/3 , or νT = Cε∆
4/3 , (6.23)

where Cε = C2/3ε1/3 is the coefficient of interest; hence the traditional requirement

that the dissipation rate ε be equal to the SGS energy production rate (including the

buoyancy term) is avoided. This base model reduces computational cost because the

derivatives in Eq. 6.21 (at grid and test levels) are no longer required. In the dynamic

Wong-Lilly (DWL) formulation, the coefficient is determined using the least-squares
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method of Lilly (1992):

2Cε∆
4/3 ≈

〈
LijŜij

〉

(1− (∆̂/∆)4/3)
〈
ŜijŜij

〉 . (6.24)

Here, the brackets <> denote local averaging, ̂ denotes the test filter, and

Lij =
̂̃
ũiũj

c
− ˜̂
ũci
̂̃ucj
c

(6.25)

̂̃
Scij =

1

2


∂

̂̃uci
∂xj

+
∂̂̃ucj
∂xi


 . (6.26)

We use the notation of Carati et al. (2001) to define the test filtered terms; the ˜c

operator denotes the effect of the discretization operator at the coarser test-level grid.

6.4.5 Combined RSFS and SGS models

We use the modified Clark or the ADM (for the RSFS) and the DWL (for the SGS)

to obtain the total SFS stress:

τij = ũ?i ũ
?
j − ũ?i ũ?j − 2Cε∆

4/3S̃ij , (6.27)

which we call the dynamic reconstruction model (DRM) (similar to Gullbrand &

Chow (2003)). The dynamic modified Clark plus DWL is denoted DRM-MC. We also

use ADM reconstruction series from levels zero through ten, denoted DRM-ADM0

through DRM-ADM10. Note that DRM-ADM0 is similar to the DMM with explicit

filtering as implemented by Vreman et al. (1994), but with the DWL substituted

for the DSM. The standard Smagorinsky model without an RSFS component is our

reference case.

The eddy-viscosity coefficient in this combined RSFS/SGS approach is determined

dynamically from

2Cε∆
4/3 ≈

〈
(Lij −Hij)Ŝij

〉

(1− (∆̂/∆)4/3)
〈
ŜijŜij

〉 (6.28)
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where we define (shown here for level zero reconstruction only)

Hij =



̂̃
̂̃uci
̂̃ucj
c

−
˜̂
̂̃uci
̂̂
ũci

c
−

( ̂̃
ũiũj

c

−
̂̃
ũiũj

c
)
, (6.29)

and ask for the reader’s indulgence for the use of such compact notation. This deriva-

tion is similar to that of Zang et al. (1993) and Vreman et al. (1994), who take into

account the contribution of the scale-similarity portion (in Hij) while computing the

dynamic coefficient. The grid cutoff (tilde, tilde-c) operators are not explicitly applied

because no robust means exist for applying a cutoff filter in a finite-difference simu-

lation like ours. The notation serves as a reminder of the effect of the discretization

operators. The finite-difference schemes on the coarser grid level partially fulfill the

purpose of the discretization operator by limiting aliasing effects (due to the mod-

ified wavenumbers which decay to zero near the grid cutoff). Thus, our combined

RSFS and SGS models constitute a mixed model that represents both back-scatter of

small-scale energy to the larger scales and forward-scatter (dissipation) of large-scale

energy by the small scales. Both processes are required for reasonable representation

of subfilter-scale effects.

Finally, we note that the dynamic reconstruction approach could be used with

other SGS models, e.g., 1.5-order TKE-based (Deardorff, 1980; Moeng, 1984) closures

commonly used in cloud-scale simulations with parameterizations of stability effects.

The values of the TKE equation coefficients are often debated (see e.g. Takemi &

Rotunno, 2003; Deardorff, 1971), so a dynamic procedure like that of Wong & Lilly

(1994) is more desirable. Stolz et al. (2001a) use the ADM reconstruction with a

relaxation term to drain energy at the smallest scales and also include a dynamic

procedure for determining the coefficient. For this work, we chose familiar eddy-

viscosity formulations for their known performance in large-scale flow simulations.

6.4.6 Enhanced near-wall stress model

Because there are limitations to the resolution with which large-scale atmospheric

flows can be simulated, special treatment is required for the turbulence model near

the lower rough boundary. We have found that any combination of RSFS and eddy-

viscosity models requires augmentation near the lower boundary, where eddy size
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decreases much more rapidly than the grid spacing. The vertical grid spacing is

invariably smaller than the horizontal one. While eddies may be well-resolved in the

vertical, they are not so in the horizontal, thus introducing errors. Because 2∆x is

the minimum eddy size that can be resolved in the horizontal (arguably 4∆x is the

smallest well-resolved eddy), over a vertical distance of 2∆x, eddies of this size are

still under-resolved. This lack of resolution implies that an additional stress term

may be needed near the wall to represent these motions.

Furthermore, the physical existence of subgrid roughness may alter the distribu-

tion of stresses near the surface. Nakayama & Sakio (2002) examined the effects

of subgrid roughness with DNS of flow over a wavy bottom boundary consisting

of small and large wavelengths. Filtering the DNS flow field and the wavy DNS

boundary produced a snapshot of an ideal LES solution over the large wavelength

boundary with subgrid roughness. The filtered velocities at the surface in the LES

domain were then apparently only influenced by the larger wavelength topography,

but the subfilter-scale roughness elements (the smaller wavelengths in the original

DNS boundary) had generated extra stress near the new, smoother boundary. The

surface stress, originally distributed over the DNS boundary, became distributed over

a finite vertical layer above the smoother LES boundary. Dubrulle et al. (2002) (see

their Eq. 16) also found that filtering near a solid boundary generates extra stress

terms. These studies point to the need for a near-wall stress model that distributes

stresses generated at the rough wall over a region near the wall. Similar ideas have

been proposed by Shaw & Schumann (1992) and Patton et al. (2001) for flow through

and over vegetation canopies. These canopy models serve to distribute surface fluxes

over the plant canopy height to account for the increased drag from the vegetation.

Brown et al. (2001) extended the idea of plant canopy models to flow over rough

surfaces.

We have implemented the model of Brown et al. (2001), which can be expressed

as a forcing term in the horizontal momentum equations, −Cca(z)|u|ui, where i =
1, 2. Here Cc is a scaling factor and the function a(z) allows for a smooth decay

of the forcing function as the cutoff height, hc, is approached. a(z) is set equal to

cos2(πz/2hc) for z < hc and is zero otherwise. When implemented numerically, the

enhanced stress is included in the turbulence closure stress term, and therefore is
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integrated numerically using the trapezoidal rule:

τi,near−wall = −
∫
Cca(z)|u|uidz , (6.30)

where the integration constants are chosen so that τi,near−wall = 0 at the top of the

enhanced stress layer. This stress is then directly added to the τi3 terms from the

other model components.

6.5 Large-eddy simulations of neutral boundary

layer flow

To test the performance of the closure models, we use the ARPS code to simulate a

rotation-influenced neutral boundary layer flow case similar to that of Andren et al.

(1994). For the laminar case, or with a constant eddy viscosity, this flow has the Ek-

man spiral as an analytical solution (see Stull, 1988, pp. 210-212). The fully turbulent

solution has been examined by several researchers, e.g., Coleman (1999) (DNS), Sul-

livan et al. (1994), Andren et al. (1994), Kosović (1997), Ding et al. (2001), Porté-

Agel et al. (2000) (no Coriolis forcing), Redelsperger et al. (2001), Carlotti (2002),

and Esau (2004). Using scale analysis, Blackadar & Tennekes (1968) showed that

the near-wall region of the turbulent Ekman layer should follow a logarithmic law.

Typical eddy-viscosity models do not give a good logarithmic region near the wall,

usually overpredicting the shear in the model with the velocity too low at the wall,

and too high further away from it (Andren et al., 1994).

The following sections compare the new turbulence model approach (RSFS plus

SGS) with results from the standard Smagorinsky model available in ARPS. The

TKE-1.5 closure in ARPS gives results similar to the Smagorinsky model, so they are

not shown. The simulation setup and the effects of dynamic reconstruction on the

flow solution are described below.

6.5.1 Model details and flow setup

ARPS was developed at the Center for Analysis and Prediction of Storms at the

University of Oklahoma. Intended mainly for mesoscale and small-scale atmospheric
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simulations, ARPS is formulated as an LES code that solves the three-dimensional,

compressible, non-hydrostatic, filtered Navier-Stokes equations. ARPS details can

be found in Xue et al. (1995, 2000, 2001), in Section 2.2, and in Appendices C and

D. As noted in Section 6.2, the equations have been slightly modified to make them

closer to the incompressible case studied by Andren et al. (1994), as detailed in Xu

et al. (1996). After this work was completed, we performed tests with the original

compressible ARPS code, but the results were essentially the same as those for the

quasi-incompressible case described here. The derivations given earlier for τij were

used in the compressible version of the code after multiplying by the plane-averaged

density (the base state density in ARPS), giving the stress as τij = < ρ >(uiuj− ũiũj)
(see Appendix D).

The flow is driven by a constant pressure gradient corresponding to a geostrophic

wind of (Ug, Vg) = (10, 0) m/s. The ARPS code is run for thirty non-dimensional

time periods tf , where f is the Coriolis parameter, set equal to 1×10−4 s−1; (30 tf =

300 000 s). This configuration results in an Ekman-like spiral for the mean velocities.

The initial conditions are the analytical Ekman spiral solution with small perturba-

tions that trigger instabilities so that the flow becomes fully turbulent (see Figure 6.6

later).

The grid size for the control case is 43×43×43 with grid spacings of 32 m × 32 m

in the horizontal. In ARPS this corresponds to a domain size of ∆x(nx−3) = 1280 m

in each horizontal direction. In the vertical, a stretched grid is used, with ∆zmin = 10

m spacing near the bottom and up to 65 m near the top of the domain. The average

spacing is 37.5 m and the domain height is 1500 m. Fourth-order spatial differencing

was used for the advection terms. Temporal discretization uses a mode-splitting

technique to accommodate high-frequency acoustic waves; the large time steps (0.5 s)

use the leapfrog method, while first-order forward-backward explicit time stepping is

used for the small time steps (0.05 s) (except for terms responsible for vertical acoustic

propagation, which are treated implicitly). Higher and lower grid resolutions as well

as different grid aspect ratios were also studied. Run parameters are given in Table

6.1 for all the tests and the base case.

The top and bottom boundaries are treated as rigid free-slip (also called semi-slip

at the lower boundary). Surface fluxes are parameterized to account for the influence

of the rough bottom surface. ARPS parameterizes momentum fluxes at the surface
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Run name Grid size ∆x ∆zmin Large ∆t Small ∆t Cc hc
Smagorinsky∗ (43,43,43) 32 m 10 m 0.5 s 0.05 s – –

DWL (43,43,43) 32 m 10 m 0.5 s 0.05 s 0.5 4∆x
DRM-MC (43,43,43) 32 m 10 m 0.5 s 0.05 s 0.65 4∆x

DRM-ADM0 (43,43,43) 32 m 10 m 0.5 s 0.05 s 0.5 4∆x
DRM-ADM1 (43,43,43) 32 m 10 m 0.5 s 0.05 s 0.5 4∆x
DRM-ADM2 (43,43,43) 32 m 10 m 0.5 s 0.05 s 0.5 4∆x
DRM-ADM5 (43,43,43) 32 m 10 m 0.5 s 0.05 s 0.5 4∆x
DRM-ADM10 (43,43,43) 32 m 10 m 0.5 s 0.05 s 0.5 4∆x
Smagorinsky (43,43,43) 64 m 10 m 1.0 s 0.1 s – –
Smagorinsky (43,43,43) 128 m 10 m 2.0 s 0.2 s – –
Smagorinsky (43,43,83) 32 m 5 m 0.5 s 0.05 s – –
Smagorinsky (83,83,83) 16 m 5 m 0.25 s 0.025 s – –
Smagorinsky (83,83,83) 32 m 10 m 0.5 s 0.05 s – –
DRM-ADM0 (43,43,23) 32 m 20 m 0.5 s 0.05 s 0.4 4∆x
DRM-ADM0 (43,43,23) 64 m 20 m 1.0 s 0.1 s 0.6 4∆x
DRM-ADM0 (43,43,23) 128 m 20 m 2.0 s 0.2 s 0.8 4∆x
DRM-ADM0 (43,43,43) 16 m 16 m 0.25 s 0.025 s 0.4 4∆x
DRM-ADM0 (43,43,43) 64 m 10 m 1.0 s 0.1 s 0.75 4∆x
DRM-ADM0 (43,43,43) 96 m 10 m 1.0 s 0.1 s 0.83 2∆x
DRM-ADM0 (43,43,43) 128 m 10 m 2.0 s 0.2 s 0.85 2∆x
DRM-ADM0 (43,43,83) 32 m 5 m 0.5 s 0.05 s 0.7 2∆x
DRM-ADM0 (43,43,83) 64 m 5 m 0.5 s 0.05 s 0.85 2∆x
DRM-ADM0 (83,83,83) 16 m 5 m 0.25 s 0.025 s 0.5 4∆x
DRM-ADM0 (83,83,83) 32 m 10 m 0.5 s 0.05 s 0.5 4∆x

Table 6.1: List of simulations and parameters. Standard grid sizes are followed by
those with various grid aspect ratios. ∗ denotes the base case.

with an instantaneous logarithmic drag law (used here with constant drag coefficients)

at each grid point. The bottom roughness is set to 0.1 m and the drag coefficient is

derived by applying the logarithmic velocity condition to the first grid cell above the

wall (at height ∆zmin/2). At the lateral boundaries, periodic conditions are used for

this idealized flat-terrain study.

6.5.2 Implementation of RSFS, SGS, and wall models

The Smagorinsky closure provides the base standard against which we compare our

new turbulence modeling approaches. The Smagorinsky coefficient is chosen as CS =

0.18 (see e.g. Sullivan et al., 1994).
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The anisotropic explicit filter for the reconstruction models was applied at twice

the grid spacing, 2∆g, which is compatible with the fourth-order advection schemes

used by ARPS (Ghosal, 1996; Chow & Moin, 2003). This filter appears in the calcula-

tion of the RSFS terms and in the dynamic procedure. For ease of implementation, we

apply the van Cittert series expansion reconstruction in computational space which

has a uniform grid (though still allowing for anisotropy); therefore the filters are ap-

plied in computational space (Jordan, 1999; Stolz et al., 2001a). The Taylor series

reconstruction is formulated in physical space, so the metric terms are included in the

computation of the derivative terms, but the filters are also applied in computational

space.

The greatest difficulty in implementation of the RSFS models is near solid bound-

aries, where care must be taken in representing higher-order terms in the Taylor

series approach. Likewise, for the van Cittert iterative approach for reconstruction,

numerous applications of the filter can become tricky near the wall. For rough walls,

the simple no-slip condition must be modified to account for roughness effects; the

boundary condition at the wall may be inadequate for accurately generating ghost

points for computing derivatives and filters at the wall. We nevertheless use the ghost

cells to enforce the boundary conditions. Note that “free slip” and “no slip” refer

to the mathematical velocity boundary conditions; in both cases the flow is over a

physically rough surface where the bottom stress is parameterized with a log law. The

values at the wall can be sensitive to these bottom boundary conditions due to the

repeated filtering that occurs there. However, when RSFS models are used together

with SGS models at the wall, the RSFS contribution decays to zero (see Section 6.2)

regardless of the specified boundary conditions.

On the other hand, our tests of the dynamic Smagorinsky SGS model in ARPS

showed very strong sensitivity to the bottom boundary conditions. For flow over a

rough wall, the surface stress is prescribed; in ARPS this stress is input as the value of

τ13 at the wall. However, the dynamic Smagorinsky model requires calculations of S̃13

and
̂̃
S13

c
at the wall. ARPS uses free-slip (zero-gradient) boundary conditions for ũ

and ṽ at the wall, so the calculated S̃13 is near zero, causing S̃13 and the dynamically

calculated coefficient to have kinks near the wall. We tested a simple correction that

extrapolates from above to better estimate S̃13 at the wall. This removed the kink

in the CS profiles, but still did not provide enough stress at the wall, and caused a
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kink in the total stress and Φ profiles (see definition in Eq. 6.37). Planar averaging or

test filtering in the dynamic procedure had little effect on the final planar-averaged

profiles and did not correct the kinks. Porté-Agel et al. (2000) tested the standard

dynamic Smagorinsky model and obtained values of the dynamic coefficient that were

also too small near the wall.

The dynamic Wong-Lilly (DWL) model was not as sensitive to the chosen bound-

ary conditions for S̃13 (because νT does not depend on it explicitly), and did not

produce a kink in the CS or eddy-viscosity profiles. The stress provided by the DWL

model is still too small at the wall, but with a smaller kink. In addition to giving

more reasonable profiles near the wall, the DWL is easier to implement and more

computationally efficient than the DSM. Wong & Lilly (1994) used a horizontal plane

average, which is not applicable to flow over terrain; we therefore use a local filter

created by applying the test filter twice. The dynamic eddy viscosity is also clipped

at −1.5× 10−5 to prevent the eddy viscosity from becoming too negative locally and

causing instabilities (see Zang et al., 1993; Wong & Lilly, 1994).

The effect of different smoothing functions on the final value of the eddy viscosity

was investigated by comparing the percentage of points that were clipped. Figures

6.2 and 6.3 show the effect of increased smoothing on the clipping applied with the

DWL and DRM-ADM0 models. Increasing the width of the smoothing function from

one application of the test filter, to averaging over the entire plane, reduces the need

for clipping. The clipping percentage is considerable very near the surface, then

diminishes above, but grows large near the top boundary. The large values near the

wall likely arise from difficulties in calculating derivatives and filters there. Near the

top boundary, the clipping percentage appears to grow unreasonably large. Even with

planar averaging, which should smooth all of the fluctuations in the components of

Cε, there is clipping in the DRM-ADM0 simulations.

Figure 6.4a shows an instantaneous profile of the numerator and denominator

used to calculate νT with DRM-ADM0. The large negative values of νT near the

top of the domain are likely caused by numerical errors, as the quantities are quite

small, but their ratio large. Likewise, the fairly large positive regions in the middle

of the flow are also a result of the division of two small numbers. There are, however,

significant eddies even in the middle of the flow domain, so the large local values of

νT may be justified (see Fig. 6.5). In any case, in an average sense, the values of νT
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Figure 6.2: Percent clipping over each horizontal plane for the dynamic Wong-Lilly
model (DWL) with different smoothing options: (a) local test filter, (b) planar av-
erage, (c) two test filters, (d) three test filters. Averaged from two instantaneous
snapshots.

are insignificant when multiplied by the very small velocity gradients away from the

wall; the resulting stress profile is shown in Fig. 6.4(b). We have used two test filters

to somewhat minimize the amount of clipping; results for all four choices shown in

Figs. 6.2 and 6.3 give quite similar results in the averaged mean velocity profiles.

The only input parameter required for the DWL is the ratio of the test and

explicit filters, ∆̂/∆f , which we choose to be two. The resulting test filter is thus

4∆x, which differs from the usual test filter used without explicit filtering. When no

reconstruction is used, the test filter is often chosen as twice the grid spacing (see

e.g. Zang et al., 1993). This is a distinguishing, though subtle, feature of explicit

filtering and was used by Gullbrand & Chow (2003) as well as Winckelmans et al.

(2001). Furthermore, the resulting test plus explicit filter must be similar in shape

to the original explicit filter. The discrete tophat explicit filter is applied with

f i = 0.25fi−1 + 0.5fi + 0.25fi+1 , (6.31)
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Figure 6.3: Percent clipping over each horizontal plane for DRM-ADM0 with different
smoothing options: (a) local test filter, (b) planar average, (c) two test filters, (d)
three test filters. Averaged from two instantaneous snapshots, therefore the planar
averaged results show a few points with 50% clipping.
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Figure 6.4: (a) Instantaneous profiles of the numerator and denominator of the eddy
viscosity νT , and the final νT before clipping, for DRM-ADM0 with one local test
filter applied, and (b) the corresponding instantaneous τ13 profile.
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Figure 6.5: Instantaneous contours of the eddy viscosity νT (m2/s2) after clipping, for
DRM-ADM0 with one local test filter, at k = 5. Clipping is indicated by the enclosed
white regions with a value of -1.5×10−5.

where i temporarily denotes the grid index; therefore the test filter is

f̂i = 0.5fi−1 + 0.5fi+1 (6.32)

to give a combined test plus explicit filter of

f̂ i = 0.125fi−2 + 0.25fi−1 + 0.25fi + 0.25fi+1 + 0.125fi+2 , (6.33)

which is simply a tophat filter of twice the width of the explicit filter (see Eqs. 5.11

and 5.12, and Gullbrand & Chow, 2003).

Following Brown et al. (2001), Cederwall (2001) and Chow & Street (2002), we

implement a near-wall stress model, based on the model given previously in Eq. 6.30.

Brown et al. (2001) choose a constant Cc so that the velocity at the top of the canopy

matches experimental measurements. Cederwall (2001) selected Cc such that the

near-wall stress model augmented the total stress at the first grid point above the

wall to make it equal to the total local bottom shear stress. We allow Cc to be locally

proportional to the bottom shear stress in each horizontal direction. The propor-

tionality factor is chosen so that the near-wall stress model provides the necessary
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augmentation that yields logarithmic mean velocity profiles near the wall. The varia-

tion of the Cc and hc (the layer height) with grid spacing and aspect ratio is described

later. The near-wall stress model is part of the SGS model component, but is treated

separately from the eddy-viscosity contribution.

Finally, current turbulence models often do not provide enough dissipation at

the highest frequencies, so computational mixing terms may be added for stability

if desired. We follow the recommendations in ARPS and use a small fourth-order

term, which can be considered to be a type of hyper-viscosity. ARPS also includes

a divergence damping term to control acoustic noise. The impact of these damping

terms has been assessed and found to be minimal (see also Section 6.5.3).

6.5.3 Simulation results

Time evolution

Figures 6.6a and 6.6b show the evolution of the non-stationarity measures Cu and Cv

defined by (following Andren et al. (1994))

Cu = − f

uws

∫ ztop

0
(< ṽ > −Vg)dz (6.34)

Cv =
f

vws

∫ ztop

0
(< ũ > −Ug)dz (6.35)

(6.36)

where ztop is the stress-free top of the simulation domain, and the uws and vws denote

the total surface stresses in the uw and vw planes, respectively. The brackets <>

denote horizontal planar averaging, as well as time averaging, using data taken at

each time step. At steady-state, both Cu and Cv should be unity, but even after 100

000 s, oscillations are apparent in Figs. 6.6a and b. Note that the spin-up time is

much shorter for the DRM-ADM0 run. Andren et al. (1994) state that the oscillations

affect primarily the first-order statistics of the flow, but some of our comparisons are

quite sensitive, so we seek a solution as close to a statistically steady state as possible.

Unless otherwise indicated, we average from 200 000 s to 300 000 s, where oscillations

in the Cv curve especially have decayed significantly. Our simulation and averaging



6.5. LES OF NEUTRAL BOUNDARY LAYER FLOW 129

times are about three times as long as those of Andren et al. (1994).

First-order quantities

Figure 6.7a shows semi-log plots of mean wind speed from four different turbulence

model configurations: no model, static Smagorinsky, dynamic Wong-Lilly, and DRM-

ADM0. The wind speed (U =
√
ũ
2
+ ṽ

2
) is normalized by the (time averaged) friction

velocity defined by u∗ = (uw2s + vw2s)
1/4 (found to be approximately 0.44). The

theoretical log-law profile is also shown. The ‘no model’ and Smagorinsky results

deviate considerably, but the DWL and DRM results provide good agreement. The

‘no model’ simulation incorporates the rough wall boundary condition, therefore the

surface stress contributes at the first point above the wall and slows the wind speed.

A more sensitive measure of a model’s performance is the non-dimensional velocity

gradient, Φ, defined as

Φ =
κz

u∗

√√√√
(
∂ < ũ >

∂z

)2
+

(
∂ < ṽ >

∂z

)2
. (6.37)

Here κ is the von Kármán constant, chosen to be 0.4. In a logarithmic region, Φ = 1,

which we expect for approximately the first 150-250 m above the wall, or 10-15% of

the boundary layer depth (Sullivan et al., 1994). Profiles of Φ, shown in Fig. 6.7b

have been smoothed to remove 2∆z waves present in the derivatives (but not in

the original velocity fields). We see that the overshoot in Φ reaches 1.6 for the

traditional Smagorinsky model, indicating the model provides excessive shear near

the surface. Similar overshoots were observed in other studies (Andren et al., 1994;

Sullivan et al., 1994; Kosović, 1997). It appears that the Smagorinsky model behaves

as a large viscosity model that mimics the molecular viscosity dissipation near a

smooth wall. However, in large-scale flows, the linear region is confined to a few

millimeters above the surface, and the log region should cover the entire 10% near

the wall in our simulation results. Our efforts at improving near-surface Φ profiles

are aimed at replacing this gradient-diffusion behavior near the wall. Surprisingly,

the results using no model appear fairly logarithmic after the first point above the

wall, but the velocity magnitude is significantly over-predicted.
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Figure 6.6: Comparison of non-stationarity parameters (a) Cu and (b) Cv for the
Smagorinsky model and the DRM-ADM0 hybrid model.



6.5. LES OF NEUTRAL BOUNDARY LAYER FLOW 131

10
−3

10
−2

10
−1

10
0

8

10

12

14

16

18

20

22

24

26

<
U

>
/u

*

z/H

No model
Smagorinsky
DWL
DRM−ADM0

(a)

0.5 0.75 1 1.25 1.5 1.75 2
0

50

100

150

200

250

300

350

400

450

500

Φ

z 
(m

)

No model
Smagorinsky
DWL
DRM−ADM0

(b)

Figure 6.7: Comparison of (a) mean wind speed and (b) non-dimensional mean shear
Φ profiles for no model, the Smagorinsky model, the dynamic Wong-Lilly model,
and for the DRM-ADM0 hybrid model (level-0 reconstruction, DWL, and near-wall
stress). Theoretical log profile also shown in (a).
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When reconstruction and dynamic eddy-viscosity models are used with the near-

wall stress term (DRM-ADM0), values of Φ within 0.1 of the ideal value (unity) are

obtained. This represents a significant improvement over the standard Smagorinsky

simulations. It is better than several previous attempts to improve Φ profiles, where

agreement within about 0.2 was achieved by Sullivan et al. (1994), the backscatter

results of Mason and Brown in Andren et al. (1994), and those of Porté-Agel et al.

(2000), and Ding et al. (2001), using various SGS methods. Our results are com-

parable to those of Kosović (1997), where Φ profiles were also within 0.1 of unity.

The simulations of Esau (2004) using a dynamic mixed model did not produce sat-

isfactory results near the wall (see Esau, 2004, Figs. 11a and 15d); while the DMM

provides some reconstruction, it was not used with a formal explicit filter, making

the level of reconstruction ambiguous. Sensitivity to the numerical formulation with

the Smagorinsky model as the base model for the dynamic procedure (as opposed

to DWL) and the absence of a near-wall stress model may also have limited the

improvement obtained by the DMM.

Our hybrid model has the advantage of having no adjustable parameters aside

from the enhanced near-wall stress. Furthermore, the reconstruction component is

of scale-similar form, and thus allows backscatter, i.e., energy flux from the small

to the large scales. This is believed to be especially important in the atmospheric

boundary layer when the large scales are not fully resolved and it aids in achieving

a logarithmic mean velocity profile. The influence of the enhanced near-wall stress

is of course strongest near the wall, where it straightens the Φ profiles. However,

the impact of the near-wall stress model does not overwhelm the near-wall results to

the point where the turbulence model becomes irrelevant. Tests with the near-wall

stress added to the standard Smagorinsky model (without reconstruction) did not

produce encouraging results. Interestingly, the DWL model without reconstruction

also performs quite well; the effects of adding reconstruction will become clearer when

second-order statistics are evaluated later.

Figure 6.8 compares results from using the modified Clark model for the RSFS

motions and the dynamic eddy-viscosity model for the SGS stresses (DRM-MC). Note

that for this reconstruction model only, the dynamic procedure does not include the

contribution of the RSFS model when calculating the SGS coefficient. This avoids the

calculation of Hij which requires that the RSFS component be calculated on the test
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Figure 6.8: Comparison of non-dimensional mean shear Φ profiles for the dynamic
modified Clark model (DRM-MC), compared to DRM-ADM0 and DRM-ADM1.

filter level; for the modified Clark model this would require computing the derivatives

on the coarser grid, thus complicating the calculations. Attempts at using derivatives

on the fine grid for Hij did not produce good results. The DRM-ADM models were

also tested without using Hij. The eddy-viscosity profiles were quite similar near

the wall and differences above that were largely due to numerical errors. Since the

magnitude of the shear rate is small far from the wall, the contribution of the eddy-

viscosity terms is negligible away from the wall regardless of Hij. The comparisons of

Φ in Fig. 6.8 indicate that the modified Clark simulations fall in the same category

as the DRM-ADM0 and DRM-ADM1 results, as expected. (The stresses also lie

between the DRM-ADM0 and DRM-ADM1 profiles but are not shown.) The DRM-

MC results display slightly more oscillation near the wall than the DRM-ADM results.

The oscillations are not visible when using the modified Clark model together with

static Smagorinsky (instead of DWL) which is more dissipative.

Figure 6.9 shows the effect of increasing the level of reconstruction in the DRM-

ADM models. It is difficult to identify the best model in the mean velocity profile

plots (see Fig. 6.7). The Φ profiles indicate that while all the results remain within
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Figure 6.9: Comparison of non-dimensional mean shear Φ profiles for increasing recon-
struction levels; dynamic Wong-Lilly, no reconstruction; DRM-ADM0; DRM-ADM1;
DRM-ADM2.

0.1 of the ideal value, increasing reconstruction moves the profiles slightly closer to

unity near the wall. Because the curves are so close together, there is some sensitivity

to the time averaging period; Fig. 6.6 shows the deviations from stationarity differed

in time with each different turbulence model. We found that taking a long averaging

period (100 000 s) after Cu and Cv have decayed significantly gave the most reason-

able results. However, it is not clear that Φ should be the sole parameter used for

comparisons as it is quite sensitive to small wiggles which are not readily apparent

from the mean velocity profiles in Fig. 6.7a. Second-order statistics will be examined

in the following section.

To test the influence of the RSFS reconstruction further, we performed simplified

boundary layer simulations with no Coriolis force (Chow & Street, 2004b). Without

the influence of rotation, the boundary layer flow should equilibrate to a unique value

of u∗ that corresponds to the specified constant pressure gradient (here approximately

0.45). The flow is almost entirely confined to the x-direction, with instantaneous v

velocities quite small, and linear total uw stress profiles. To obtain good statistics, the

simulations were run to 400 000 s and results were averaged over the last 100 000 s.
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Figure 6.10: Comparison of non-dimensional mean shear Φ profiles for simulations
without Coriolis forcing. Smagorinsky, DWL, DRM-ADM0, DRM-ADM1, DRM-
ADM2, and DRM-ADM5 are shown.

In Fig. 6.10 we see that increasing reconstruction again improves the agreement of

Φ with the logarithmic value of unity, especially close to the wall. Results from the

Smagorinsky model and DWL are also shown for comparison.

Second-order quantities

While the Φ profiles presented above give a first-order comparison of methods, they

do not provide a clear distinction between the models. Inertial oscillations make

detailed comparison of second-order statistics also difficult, but some insight can be

gained from the patterns observed.

Figure 6.11 compares the uw stress distribution for the Smagorinsky, DWL, and

DRM-ADM0 cases from Fig. 6.7. The resolved uw stress is defined as < (ũ− < ũ >

)(w̃− < w̃ >) >, where <> denotes planar averaging. The Smagorinsky and DWL

simulations show similar contributions of the SFS stress, which is largest near the wall.

When reconstruction is added, the total SFS stress increases compared to the eddy-

viscosity simulations, while the resolved stress decreases accordingly. The magnitude
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Figure 6.11: Comparison of uw resolved (thin lines) and SFS (bold lines) stress profiles
for Smagorinsky, DWL, and DRM-ADM0.

of the total stress (resolved and SFS) differs slightly for the different simulations.

The contributions from each SFS stress component for DRM-ADM0 are seen in

the uw stress profiles in Fig. 6.12. The stress profiles are also shown on a log plot to

magnify the region near the wall.∗ The total uw stress (resolved plus SFS) is not linear

because there is a component in the vw direction due to Coriolis forcing. The influence

of the near-wall stress model decreases with height, becoming zero at hc = 4∆x = 128

m. This is equivalent to the minimum well-resolved horizontal eddy size beneath the

filter. We obtain good results with a near-wall stress model proportionality factor

Cc = 0.5, so that the near-wall stress model contributes an amount equal to half

the wall stress at the first grid point above the wall. The modified Clark or ADM

reconstruction terms (RSFS stress components) decay to zero naturally at the wall in

the presence of the other two model components (eddy viscosity and near-wall stress)

∗The resolved stress at ∆z above the wall is adjusted to account for post-processing interpolation
errors. Linear interpolation is normally used to get u to compute the uw resolved stress at the τ13

location ∆z above the wall (due to the grid staggering). Thus u is significantly underestimated
because of the steep gradients in the velocity profile at the wall. Here we linearly interpolate to
adjust the total stress values at z = ∆z and then compute the corresponding resolved stress at this
single point only.
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(see Section 6.2).

The effects of increasing reconstruction on the uw stresses are shown in Fig. 6.13.

The RSFS component of the SFS stress increases with reconstruction level (levels 0, 1

and 5), while the SGS component decreases slightly. Thus, the total SFS contribution

increases with increasing reconstruction (primarily due to the contribution of the

reconstruction terms), and the resolved contribution decreases accordingly (as seen

in Fig. 6.11). This trend was also observed in the small-scale channel flow simulations

in Chapter 5 (see Figs. 5.7 and 5.8). The slightly decreasing contribution of the eddy-

viscosity term is also apparent in Fig. 6.14 which shows profiles of νT for the same

simulations as in Fig. 6.9. Near the wall, the eddy viscosity is relatively constant.

This is the region where wall effects in the numerical procedure are strongest and the

eddy viscosity needs the augmentation provided by the near-wall stress model.

For these high Reynolds number simulations, we have no DNS result to provide

exact values of the τ13 SFS stresses. However, the turbulent stresses can be compared

to finer grid resolution simulations treated as estimates of an exact solution. These

estimates can then be used to calculate SFS stress values on the coarser grid by

using the definition of the turbulent stress tensor in Eq. 6.3. The finer grid data

come from ARPS simulations of twice the resolution in each direction (83,83,83).

The horizontal spacing is 16 m and the minimum vertical resolution is 5 m near

the wall, and stretched above that to an average of 18.75 m over a domain of the

same size as the base case (43,43,43) grid. The discrete quantities ũi can be obtained

from the instantaneous high-resolution fields a posteriori by using a sharp cutoff filter

that matches the coarse grid resolution (43,43,43) simulations. However, we do not

apply the cutoff filter for simplicity (and the inability to apply it in the vertical

direction); tests on the small-scale channel flow code showed that the cutoff filter

applied in the horizontal directions did not change the magnitude or shape of the

resulting stress profiles significantly. We have also reconstructed the velocity fields

to obtain ũ?i , which estimates the instantaneous velocity fields from a twice finer grid

(163,163,163), though the reconstruction is especially limited near the wall. The high-

resolution simulations also require a turbulence model; DRM-ADM0 is used instead

of a standard eddy-viscosity closure, because it yields good mean velocity quantities

(logarithmic near the wall). Thus we calculate τ̃ij =
˜̃u?i ũ?j− ˜̃u?i ũ

?
j . The explicit filter is

applied at twice the (43,43,43) cell spacing (i.e. 4 times the high-resolution spacing);
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Figure 6.12: (a) Normalized vertical profiles of the uw total stress for the DRM-ADM0
model (zero-level reconstruction, dynamic Wong-Lilly model, and near-wall canopy
stress), with each model component shown separately in addition to the resolved
stress. (b) Same as (a) but with a logarithmic vertical axis to magnify the region
near the wall.



6.5. LES OF NEUTRAL BOUNDARY LAYER FLOW 139

−0.25 −0.2 −0.15 −0.1 −0.05 0
10

1

10
2

10
3

<tau13>/u
*
2, <uw>/u

*
2

z 
(m

)

DRM−ADM0
DRM−ADM1
DRM−ADM5

Figure 6.13: Comparison of uw SGS (thin lines) and RSFS (bold lines) stress profiles
for the dynamic Wong-Lilly SGS model with increasing RSFS reconstruction levels:
level-0 reconstruction; level-1 reconstruction; level-5 reconstruction.
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model with increasing RSFS reconstruction levels, shown for the bottom 200 m of
the domain; no reconstruction; level-0 reconstruction; level-1 reconstruction; level-5
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a tophat filter is constructed using the trapezoidal rule for the fine grid fields to match

the filter width used in the coarse simulations. The same filters are applied in the

vertical direction. While this procedure provides only an estimate of the true SFS

stresses, at the very least the comparison shows how well we match highly-resolved

results (that are much more expensive to compute due to the 16-fold increase in

computation time when the reduced time step is taken into account).

The turbulent stresses predicted by the coarse resolution simulations using dy-

namic reconstruction agree well with the SFS stresses calculated from the finer res-

olution data. Results from DRM-ADM0 up to DRM-ADM10 are shown in Fig. 6.15

(without the near-wall stress contribution). The first point above the wall for the

fine grid stress is not shown because it cannot be calculated accurately; the boundary

conditions affect the application of multiple filters. In fact, the values of the extracted

stress within 4∆x of the wall are approximate because of the limited resolution avail-

able. Stresses predicted by the DWL model (as well as Smagorinsky, which is not

shown) are much too small. Increasing reconstruction on the coarse grid improves

agreement with the high-resolution results. This suggests that the reconstruction

procedure contributes appropriately to the SFS stress, unlike the models without re-

construction, which cannot capture the RSFS motions. Because the reconstruction

of the RSFS and the eddy-viscosity representation of the SGS stresses are imperfect,

the near-wall stress model is needed to contribute the necessary stress near the wall.

The optimal level of reconstruction is difficult to determine. Clearly, the increase

in the RSFS stresses is not linearly proportional to the reconstruction level. The series

expansion models should converge to a fixed contribution. Figure 6.15 shows that the

increase between levels 0 and 1 is much larger than the difference between levels 5

and 10. In the small-scale simulations of Gullbrand & Chow (2003), the improvement

between levels 5 and 10 was also not very large. The higher reconstruction levels

appear to converge, but the results may not be exact due to SGS effects. It is also

possible that numerical errors interact with the reconstruction procedure to limit

our ability to capture all of the RSFS motions. Given the computation costs of

reconstruction (see Section 6.5.3 below), it appears that level-2 reconstruction is a

good compromise. The increased cost from level 5 to 10 does not seem warranted by

the small difference in the results.

While the comparisons of mean velocity and Φ profiles did not clearly distinguish



6.5. LES OF NEUTRAL BOUNDARY LAYER FLOW 141

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

50

100

150

200

250

300

350

400

<τ
13

>/u
*
2

z 
(m

)

Reconstructed from (83,83,83)
DWL
DRM−ADM0
DRM−ADM1
DRM−ADM2
DRM−ADM5
DRM−ADM10

Figure 6.15: Turbulent stresses computed a posteriori from velocity fields recon-
structed from a fine resolution simulation (reconstructed from (83,83,83)), and the
sum of RSFS and SGS stresses computed by coarse grid simulations (43,43,43): DWL,
DRM-ADM0, DRM-ADM1, DRM-ADM2, DRM-ADM5, and DRM-ADM10. The
near-wall stress contribution is not included. Averaged over 100 000 to 120 000 s.
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among the simulations, these comparisons of second-order quantities show that re-

construction is important. The DWL results (without reconstruction) also produce

good mean velocity profiles (Fig. 6.7), but cannot achieve correct stress profiles. The

stress profiles are especially important in predicting turbulent transport and mixing

of scalars, and it is only with the dynamic reconstruction closure models that we are

able to obtain accurate representations of these stresses.

Effects of grid resolution and aspect ratio

A robust turbulence model should handle a variety of different grid configurations.

Figure 6.16 shows the effect of doubling the grid resolution on the Φ profiles for the

Smagorinsky and DRM-ADM0 simulations. The high-resolution grid uses twice as

many points in each direction over the same domain size to give horizontal resolution

of 16 m and ∆zmin of 5 m at the wall (see Table 6.1). The near-wall stress model

parameters were not changed. The overshoot in the Smagorinsky simulations does

not decrease; it simply moves closer to the wall. The DRM-ADM0 show equally good

results at both resolutions, giving in this case a somewhat grid-independent result for

Φ.

The comparisons in Fig. 6.16 use a constant aspect ratio of ∆x/∆z = 16/5 near

the bottom wall. Larger aspect ratios are common in LES applications where vertical

grid refinement is important for capturing the vertical structure of the atmosphere

(e.g. stratification). Aspect ratios of 100 : 1 or larger are often used in mesoscale

simulations, sometimes with boundary layer parameterizations. Such large aspect

ratios distort the minimum resolvable eddies near the wall and place a large unbal-

anced dependence on the SFS model which must compensate for this. An aspect

ratio of unity would be ideal (Kravchenko et al., 1996), but such computations are

prohibitively expensive. To better determine the contribution required of the near-

wall stress model, we have examined aspect ratios ranging from 1.0 to 12.8. Larger

ratios are not feasible on our small domain, and lead to instabilities.

Figures 6.17a and b show the effects of a sample of four different grid spacings or

aspect ratios on results using the Smagorinsky and DRM-ADM0 models. The near-

wall stress contributions in the DRM-ADM0 simulations have been adjusted to give

Φ profiles that are close to unity (see Table 6.1). The required contribution of the

near-wall stress model changes, as expected, because this model was in part developed
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Figure 6.16: Comparison of non-dimensional mean shear Φ profiles for the Smagorin-
sky model and DRM-ADM0 for 433 and 833 grid sizes. Averaged from 75 000 to 100
000 s.

to accommodate different grid aspect ratios near the wall. While the ad hoc nature

of the near-wall stress model is undesirable if the required contribution depends on

the grid, it may be possible to compose a practical guideline for determining the best

coefficients.

The two independent near-wall stress layer parameters are the layer height (hc) and

the proportionality factor (Cc). We empirically determined the parameters needed

for good results over a range of grid sizes and aspect ratios. “Good results” mean the

ability to achieve Φ profiles within 0.2 of unity near the wall. Tests indicate that the

aspect ratio is less of a controlling factor for the first parameter, the layer height, than

is the horizontal grid spacing. We argued earlier that the under-resolved region at the

wall extends between 2∆x (minimum resolved eddy size) and 4∆x (minimum well-

resolved eddy size) from the wall. Most of the simulations (of various grid sizes) gave

good results using a near-wall stress layer height equal to 4∆x; some give better results

using 2 or 3∆x. While the near-wall stress layer thickness appears well-determined

by this simple rule, there is likely a limiting factor because the enhanced stress-layer
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Figure 6.17: Comparison of non-dimensional mean shear Φ profiles for (a) Smagorin-
sky and (b) DRM-ADM0 for different grid aspect ratios: ∆x : ∆zmin = 32:10 (base
case), 32:5, 64:10, 128:10. Note that the axes are scaled differently. Averaged from
75 000 to 100 000 s.



6.5. LES OF NEUTRAL BOUNDARY LAYER FLOW 145

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aspect Ratio (∆ x/∆ z)

C
c

Figure 6.18: Variation of near-wall stress model proportionality constant with grid
aspect ratio. A curve indicating the trend of the data is also shown.

should not grow to extend beyond the boundary layer depth.

Figure 6.18 shows the variation of Cc with the aspect ratio ∆x/∆z. The ∆z

dependence of Cc is not strong, but a slightly better collapse of the data is obtained

using the aspect ratio as opposed to ∆x. The value of Cc cannot exceed unity,

where the near-wall stress model would provide a stress at the first point above the

wall exactly equal to the local wall stress. The required contribution of the near-wall

stress model increases with aspect ratio (and also with ∆x), confirming our hypothesis

that an enhanced stress layer is necessary to compensate for the under-resolved region

near the wall. The need for the near-wall stress layer does not disappear when the

aspect ratio is near unity at the wall, but its influence is reduced. Numerous tests

indicate that small deviations from the values in Fig. 6.18 also give acceptable results.

Therefore, Fig. 6.18 provides reasonable guidelines.

Velocity contours and auto-correlation

We briefly examine the difference in flow structures generated by the different tur-

bulence models. Figure 6.19 shows contours of the streamwise velocity correlation
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function for the reference case using Smagorinsky. The auto-correlation is calculated

for each horizontal plane by

ρ(d1, d2) =
< ab > − < a >< b >

((< a2 > − < a >2)(< b2 > − < b >2))1/2
(6.38)

where a is the streamwise velocity and b is the velocity field shifted by d1 and d2 in the

x and y directions, respectively. The result is averaged over 21 snapshots separated

by 2500 s intervals. Contours are shown at levels k = 1, 10, 30; corresponding sample

instantaneous contours of the streamwise velocity are also shown. Figure 6.20 shows

the corresponding results for DRM-ADM5.

As observed by Kosović (1997), the Smagorinsky model shows elongated struc-

tures in the velocity near the surface (Fig. 6.19b), whereas the DRM-ADM5 contours

(Fig. 6.20b) do not. The resulting region of high correlation for the Smagorinsky

(Fig. 6.19a) is significantly larger than for the DRM-ADM5 results (Fig. 6.20a). Far-

ther from the wall (k = 10 and 30), the differences in the correlations (and in the

velocity contours) are not as large. Kosović (1997) also observed this pattern (though

the values shown in his Figs. 13 and 14 are much smaller away from the wall). Ideally,

the autocorrelation should be zero at the edges of the domain if the length scales of

interest are fully resolved. While the results in Figs. 6.19 and 6.20 show that this is

not always the case for our small domain, the correlations do decay sufficiently for

our purposes.

Normalized energy spectra

Finally, we examine the distribution of energy over different wavenumbers. Figure

6.21 shows one-dimensional energy spectra of the streamwise velocity ũ at different

heights above the bottom boundary. Spectra are shown for (83,83,83) simulations

spanning a domain twice as large in each direction to provide a greater range of

scales; grid spacing is the same as the base case (43,43,43). We use the scaling

procedure of Perry et al. (1986) and Porté-Agel et al. (2000) to collapse the data.

Comparing to Fig. 14 in Porté-Agel et al. (2000), it is clear that our spectra drop off

much more quickly with increasing wavenumber, indicating that most of the energy

is in the larger scales. This fall off is not seen in Porté-Agel et al. (2000) because they

used spectral methods with dealiasing. We do, however, observe regions with k−1 and
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Figure 6.19: Time averaged contours of the streamwise velocity correlation (left) and
instantaneous contours of the streamwise velocity (right), for Smagorinsky. (a,b) k =
1, (c,d) k = 10, (e,f) k = 30.
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Figure 6.20: Time averaged contours of the streamwise velocity correlation (left) and
instantaneous contours of the streamwise velocity (right), for DRM-ADM5. (a,b) k
= 1, (c,d) k = 10, (e,f) k = 30.
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Figure 6.21: Streamwise normalized one-dimensional energy spectrum for DRM-
ADM0 on a larger (83,83,83) domain. Each curve is a different height above the
wall, starting at the left at the first grid point above the wall, and going up to 20
levels above the wall (from z = 5 to 231 m). Time averaged from 100 000 to 120 000 s.

k−5/3 slopes (albeit over short intervals). The change of slope occurs, as expected,

around kz = 1.

The effect of reconstruction on the energy spectra is not clear. There is little

change in the spectra using DWL alone compared to DRM-ADM0 (not shown). It is

interesting to compare the spectra obtained with the static Smagorinsky model with

those from DRM-ADM0. Figure 6.22 shows that the Smagorinsky model is much

more dissipative at high frequencies than the DRM-ADM0 results. Further from

the wall (level 15) the shapes of the spectra become more similar; in this particular

instance the Smagorinsky run has more energy. Each set of spectra are normalized

according to the appropriate u∗ for the simulation.

We also examined the effect of computational mixing. Figure 6.23 shows spectra

for DRM-ADM0 with and without computational mixing for the base (43,43,43) grid

size. As expected, the fourth-order computational mixing reduces the energy in the

higher wavenumbers. This is more apparent near the wall, though the effect is small

because the mixing coefficient is small (5 × 10−4). Note that the simulations (even
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Figure 6.22: Streamwise normalized one-dimensional energy spectrum for Smagorin-
sky and DRM-ADM0 cases on a larger (83,83,83) domain. The first pair of curves on
the left is at grid level 1 (z = 5 m), the second pair at level 5 (z = 45.9 m), and the
third pair at level 15 (z = 161.5 m) above the wall. All spectra were time averaged
from 100 000 to 120 000 s.

without computational mixing) do not have a very large k−5/3 region because of

the smaller domain size (43,43,43) shown here (compared to Fig. 6.22). Takemi

& Rotunno (2003) explored the effects of computational mixing by adjusting the

coefficients of the SGS models to compensate for removing any explicit computational

mixing. Such an approach eliminates the need for another computational parameter,

but for the present simulations we conclude that the effect of the computational

mixing is small. We have included it as it is a standard component of the ARPS

modeling system.

Computational cost

While the reconstruction models as well as the dynamic eddy-viscosity model are

straightforward to implement, the resulting increase in computational cost is not

negligible. We performed simple comparisons to determine the computational cost of

the new methods, though no effort was made to optimize the changes in the turbulence

modeling sections of the ARPS code. The base case simulations were performed using
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Figure 6.23: Streamwise normalized one-dimensional energy spectrum for DRM-
ADM0 (43,43,43) with and without computational mixing. The first pair of curves
from the left is at grid level 1 (z = 5 m), the second pair at level 5 (z = 47.2 m), and
the third pair at level 15 (z = 203.7 m) above the wall. Time averaged from 100 000
to 120 000 s.

8 processors in distributed memory mode (via MPI) on the IBM SPmachine “bluesky”

at NCAR. The computation time tests were performed for 20 000 s.

Table 6.2 shows the increased computational cost of various turbulence closures

compared to the standard Smagorinsky model. From tests of the DWL model with

and without the near-wall stress model, we estimate that the near-wall stress model

adds approximately 5% to the computation time. The reconstruction procedure also

adds significantly to the computation time. The increased cost of the turbulence

model alone is also shown. The cost for the DRM-MC results is lower than that for

all the DRM-ADM models, but note that these did not include calculations of Hij

(see Section 6.5.3). Indeed, it is the numerous filter operations that lead to increased

computational cost.

While the increase in cost is considerable, it must be compared with other means

of obtaining equally accurate results. If, for example, the resolution were doubled in

each direction, the increase in computational cost would be approximately 16 times,

assuming the timestep were reduced by a factor of two. Even with this increase in
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Model Turbulence model cost factor Total cost factor
Smag 1.00 1.00
DWL (no near-wall) 2.33 1.17
DWL 2.67 1.22
DRM-MC 3.87 1.34
DRM-ADM0 4.59 1.52
DRM-ADM1 4.75 1.51
DRM-ADM2 5.10 1.57
DRM-ADM5 5.92 1.67
DRM-ADM10 7.29 1.85

Table 6.2: Computational cost of different turbulence models compared to Smagorin-
sky.

resolution, Fig. 6.16 showed that the Smagorinsky model continues to overpredict

the values of Φ near the wall. Given this alternative, the increases in computational

time of the DRM-ADM approach seem quite reasonable for the significant improve-

ment in the results obtained. A compromise solution might be to use DRM-ADM0

up to DRM-ADM2, with an increase in total computational cost of less than 50%

over standard closure models. Finally, the increased cost of 50% seems reasonable

when compared to the factor of two increase in cost over static Smagorinsky ob-

served by Esau (2004) using the DMM, and the 50% increase for using DMM over

DSM observed by Cui (1999), both in incompressible codes; the increased cost of the

turbulence model portion was not reported. Further optimization (in the filtering

subroutines especially) can make the code more efficient.

6.6 Conclusions

The near-wall region in atmospheric boundary layer flow simulations is plagued by

poor resolution and empirically-based wall models for the bottom stress, in addition

to SGS and RSFS turbulence modeling errors. This chapter presented an approach to

turbulence modeling over rough boundaries which incorporates the ideas of explicit

filtering, velocity reconstruction, and near-wall stress modeling. As a test case, we

performed simulations of the rotation-influenced neutral boundary layer flow over flat

terrain, similar to the case of Andren et al. (1994).

Traditional turbulence closure models fail to produce the expected logarithmic
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region near the wall. We therefore began with the context provided by Carati et al.

(2001) which led to insights about useful turbulence model decompositions. With

explicit filtering, the total SFS stresses are separated into RSFS and SGS components;

the RSFS portion can be reconstructed, while the SGS portion must be modeled.

Even traditional closure models without explicit filtering require reconstruction when

finite-difference or finite-volume schemes are used. In these cases, lack of an explicitly

defined filter makes it difficult to determine a method for reconstruction. Explicit

filtering is also important for reducing numerical errors from finite-difference schemes.

Near the wall, the SGS contribution is enhanced by a near-wall stress model to account

for the effects of poor resolution, high grid-aspect ratios, and filter-induced stresses

at solid boundaries (Nakayama & Sakio, 2002; Dubrulle et al., 2002). This framework

aids understanding of the required contributions to subfilter-scale stresses, and the

simulation results show excellent agreement with similarity theory in the logarithmic

region.

Two specific alternatives were presented for velocity reconstruction: the Taylor

series expansion method of Katopodes et al. (2000a) and Chow & Street (2002), and

the approximate deconvolution method of Stolz & Adams (1999). The methods are

equivalent within the order of accuracy of the expansions. Truncation error from

Taylor series approach is kept to the desired order of the filter width by explicitly ne-

glecting higher-order terms in the reconstruction of τij. The ADM procedure includes

higher-order quantities in τij, so the truncation error is less well defined. However,

ADM provides a simple iterative method for calculation of higher-order series expan-

sions for reconstruction, so it is a convenient alternative to calculating the derivatives

for the Taylor series. Both methods reduce to the scale-similarity model of Bardina

et al. (1983) at lowest order and both provide backscatter of energy from small to

large scales. Both models also satisfy the full τij evolution equations to a pre-defined

order of accuracy (though this is clearer when higher-order terms are neglected as

done when using the Taylor series approach). While the Taylor series or ADM ap-

proaches provide good estimates for the RSFS component of the SFS stresses, the SGS

component must be modeled. We implemented the dynamic eddy-viscosity procedure

of Wong & Lilly (1994) which requires only the test filter width as a free parameter.

The dynamic Wong-Lilly model has been used to provide necessary dissipation, with-

out incurring the expected drawbacks of an eddy-viscosity model, because it is used
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in conjunction with a scale-similarity model. The near-wall stress is enhanced using

the canopy stress model of Brown et al. (2001).

The combinations of the Taylor series or ADM reconstruction, the DWL, and the

near-wall stress model significantly improved first- and second-order statistics. The

modified Clark model arises from the fourth-order accurate Taylor series expansions,

and provided comparable results (DRM-MC) to the DRM-ADM0 or DRM-ADM1

results using the ADM approach. Higher-order reconstructions were performed only

with the ADM, because of the ease of implementation with that model. Mean veloc-

ity profiles and nondimensional shear profiles (Φ) showed excellent agreement with

similarity theory in the logarithmic region. The influence of increased reconstruction

was not clear from the first-order quantities even when averaged over a time long

period.

Second-order statistics, particularly the uw stress decomposition, revealed that

increasing reconstruction increases the RSFS contribution as well as the total SFS

stress, while correspondingly reducing the resolved uw stress. This increase in the

SFS stress clearly distinguishes the DRM-ADM and DRM-MC models from the DWL

and Smagorinsky models without reconstruction. Using finer resolution data to re-

construct a high-resolution field for comparison, we showed that the increased SFS

stresses (from simulations at the base case low resolution) approach the required SFS

stress predicted by the finer resolution data. The DWL and Smagorinsky results

strongly underpredict stresses. These observations are in agreement with those of

Gullbrand & Chow (2003) who showed that the stresses from small-scale channel

flows using the DRM approached the predicted stresses from DNS data. Accurate

prediction of stresses is especially important for atmospheric flows, where turbulent

transport and mixing of scalars such as temperature, moisture, aerosols, and pollu-

tants are of interest.

These results for high Reynolds number atmospheric flow simulations over rough

boundaries are very encouraging. Several different grid resolutions and grid aspect

ratios have been tested, and reasonable results have been obtained by accounting

for the required variation in the near-wall stress model as a function of horizontal

grid spacing and grid aspect ratio. We found that the near-wall stress model is

insufficient for correcting large-eddy simulations near the lower boundary, and that it

must be used in conjunction with a sophisticated explicit filtering and reconstruction
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approach. The improvements obtained from the near-wall stress model point to the

need for more sophisticated SGS closures that account for the effects of a rough

boundary at the lower wall.

In summary, the steps required to achieve improved neutral boundary layer sim-

ulations are as follows. First, an explicit filter width must be chosen which is com-

patible with the discretization scheme used (Chow & Moin, 2003; Ghosal, 1996). We

chose the explicit filter to be twice the grid size. The explicit filter is the basis for

the reconstruction procedure, which is easiest to implement using the ADM approach.

Level-0 reconstruction (DRM-ADM0) significantly improves the mean quantities, and

higher-order reconstruction further improves the representation of the SFS stresses

especially. The reconstruction approach is used with a dynamic eddy-viscosity pro-

cedure which requires a test filter, typically taken to be twice the explicit filter. In

our case, the test filter width was four times the grid spacing. The test filter is used

to calculate RSFS and SGS contributions at the test level; they are then compared

to their values at the explicit filter level to determine the appropriate eddy-viscosity

coefficient. Finally, the SGS contribution is not sufficient near the wall, so a separate

near-wall stress model is added to enhance the stress. The thickness of this near-wall

stress layer is typically chosen to be between 2 ∆x and 4∆x. The proportionality

factor which determines the contribution of the enhanced near-wall stresses varies

between 0.4 and 0.9. Thus, the combined RSFS, SGS and near-wall stress approach

requires two parameters for the enhanced near-wall stress, plus a priori selection of

the explicit and test filter widths.

As LES is applied to problems where more of the energy of the flow is unresolved,

the accuracy of the SFS model becomes increasingly important. Although there is

increased computational cost, the explicit filtering and RSFS approach is warranted

by the resulting improvements in the results. To our knowledge, we have demon-

strated for the first time that scale-similarity or reconstruction models used with

explicit filtering can dramatically improve results for high Reynolds number, rough,

atmospheric boundary layer flows. This approach should also be tested for other flow

conditions. Preliminary tests on moderately convective boundary layer (see Appendix

F) and moderately stable boundary layer simulations show improved agreement with

similarity parameters.



Chapter 7

Simulations of flow over an isolated

hill∗

The evaluation of turbulence closure models for large-eddy simulation has primarily

been performed over flat terrain, where comparisons to theory and observations are

simplified. In Chapter 6, we developed improved closure models using explicit filter-

ing and reconstruction for neutral boundary layer flow over flat but rough terrain.

Now, we extend the results to flow over full-scale topography. We consider Askervein

Hill, an isolated hill in western Scotland, where a field campaign was conducted in

1983 under neutral stratification and steady wind conditions. This widely-studied

flow provides a more challenging test case for the new turbulence models because of

the sloping terrain and separation in the lee of the hill. Results indicate that recon-

struction and dynamic eddy-viscosity models, used together with the near-wall stress

model, improve predictions of flow speed-up and turbulent kinetic energy over the

hill. High resolution is needed, particularly in the vertical direction. We believe this

is the first time that reconstruction (scale-similarity) or dynamic turbulence models

have been applied to full-scale simulations of the atmospheric boundary layer over

terrain. Simulations with the lowest level of reconstruction are straightforward. In-

creased levels of reconstruction present difficulties, however, and require modification

of the closure model near the ground, pointing to the need for further study on the

∗This chapter is an extended version of the paper “Evaluation of turbulence models for large-eddy
simulations of flow over Askervein hill” by Fotini Katopodes Chow and Robert L. Street, which is
to be published in the proceedings of the 16th Symposium on Boundary Layers and Turbulence,
American Meteorological Society, August 2004 (Chow & Street, 2004a).
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behavior of closure models in this flow region.

7.1 Introduction and background

After successfully demonstrating the performance of explicit filtering and reconstruc-

tion turbulence modeling for neutral boundary layer flows, we turn to a more challeng-

ing test case that includes the effects of terrain. Several studies have been performed

over simple hills to evaluate the performance of different turbulence models; however,

most are done at laboratory scales because of the availability of experimental data for

comparison (Brown et al., 2001; Allen & Brown, 2002; Besio et al., 2003). Such simu-

lations are convenient because they have clearly defined boundary conditions and are

generally well-resolved numerically because of the low Reynolds number conditions.

As our interest is in improving the performance of mesoscale atmospheric flow

simulations, we have instead chosen to simulate flow over Askervein Hill, a relatively

isolated hill located along the west coast of South Uist island, Scotland (see Fig. 7.1).

The Askervein Hill project collected velocity and turbulence data that provide a

unique dataset for comparison to numerical simulations (Taylor & Teunissen, 1987).

Similar observational datasets are also available from field campaigns performed at

Black Mountain (Bradley, 1980), Cinder Cone Butte (Lavery et al., 1982; Strimaitis

et al., 1982), Blashaval Hill (Mason & King, 1985), and Kettles Hill (Salmon et al.,

1988), among others. We selected Askervein Hill because turbulence measurements

are available for comparison and because this flow has been extensively modeled by

other researchers (Raithby et al., 1987; Kim & Patel, 2000; Castro et al., 2003). The

goal of this chapter is to evaluate the new turbulence closure methods presented in

Chapter 6 using ARPS for flow over terrain.

We follow the examples given by Raithby et al. (1987) and Castro et al. (2003),

and compare our simulation results to field measurements TU-03a, TU-03b, MF-03d

and TK03 of Taylor & Teunissen (1985), collected between 1200 and 1700 (British

summer time = UTC + 1 hour) on October 3, 1983. These observation periods had

Richardson numbers between -0.0038 and -0.011 (very slightly unstable), therefore

the atmosphere can be considered approximately neutrally stratified. The moderate

to strong winds (e.g. 10 m/s wind speed at the reference site (see RS in Fig. 7.2) at 10

m above ground level for TU-03a and 8.9 m/s for TU-03b) were from the southwest
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Figure 7.1: Askervein Hill as seen from the reference site (RS, see Fig. 7.2). Courtesy
of Peter Taylor.

(210◦ clockwise from North) during this time period. A long rain shower occurred

earlier in the morning, and low clouds were present at approximately 300 m above

ground level (agl) (at less than 300 m agl over the hills). This perhaps indicates the

presence of a stable layer at about 300 m. The observed mean flow data were averaged

in time over 10 minutes and turbulence data were calculated over 30 minutes (Taylor

& Teunissen, 1987).

7.2 Model setup

Topographic data for Askervein were provided by Walmsley & Taylor (1996) at ap-

proximately 25 m horizontal resolution. Elevation contours are shown in Fig. 7.2.

The grid (centered near Askervein Hill, 57◦ 11’ N, -7◦ 22’ W) was rotated 60 degrees

clockwise to align the y-axis with the incoming 210◦N winds. Elevations were inter-

polated to 35 m horizontal resolution using 163 × 163 grid points to cover a 5600 m

square domain. In the vertical, 59 points are used; the minimum grid spacing is 5

m at the ground surface and is stretched using a tanh function to yield an averaging

spacing of 12.5 m over the 700 m vertical extent of the domain. Simulations were also
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Figure 7.2: Elevation contours (m) of topography for simulations, rotated 60 degrees
clockwise from north. Contour interval is 12 m.

performed with a 1000 m domain height, but with very little difference in the results,

so they are not shown.

We use a roughness value of z0 = 0.03 m and apply a log-law bottom boundary

condition as done by Raithby et al. (1987) and Castro et al. (2003). The flow is

allowed to spin up for 2700 s, after which 900 s of data are collected for averaging at

30 s intervals. For the turbulence statistics, 1800 s of data are collected.

Reference simulations were performed using the standard 1.5-order TKE closure

(Deardorff, 1980; Moeng, 1984) in ARPS. These are compared to results from the

dynamic Wong-Lilly (DWL) and the dynamic reconstruction (DRM) models (see

Chapter 6 for details). As discussed below, reconstruction of levels greater than zero

(i.e. more than the Bardina term) leads to terrain-induced instabilities. Modifications

are proposed to allow for higher levels of reconstruction.

To provide a realistic turbulent inflow, a separate neutral boundary layer simu-

lation with periodic boundary conditions and flat terrain is performed and data are

extracted from a slice in the domain at every time step. This “turbulence database”

is based on the simulations performed in Chapter 6 using the level-0 dynamic re-

construction closure model (DRM-ADM0), which provides a good representation of
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the logarithmic velocity profile expected in a neutral boundary layer. The grid size

for this periodic case is (83,163,83) with 35 m horizontal and 5 m minimum vertical

resolution, covering a 2800 × 5600 × 1000 m domain. The 1000 m domain height

also accommodated the grids of different vertical extent which were tested for the

Askervein grid. The reference elevation for ARPS is set to 10 m above sea level (asl)

so that the pressure matches that at the inflow to the Askervein domain. This tur-

bulent dataset is then used to specify the inflow velocity at every time step on the

western side of the Askervein domain. The flow throughout the domain is thus fully

turbulent (see e.g. Fig. 7.12 later); in contrast, if the flow is driven by constant inflow

boundary conditions, it is not able to become fully turbulent over the short length of

the domain.

The north and south boundaries are set to be solid free-slip walls. At the east

boundary, zero-gradient conditions are applied. The initial conditions are set to a

constant logarithmic profile and neutral stratification. Severe oscillations were ini-

tially observed when the turbulent inflow data were imposed, because disturbances at

the boundary propagated quickly through the pressure field into the initially uniform

flow fields. This was corrected by using the pressure detrending option in ARPS,

which sets the domain-wide mean perturbation Exner function to zero to control

pressure drift (usually due to boundary condition effects). The effects of the detrend-

ing on the flow solution are small; the magnitude of the pressure appears only in the

relatively small pressure perturbation contribution to the buoyancy term (Klemp &

Wilhelmson, 1978; Xue et al., 1995).

7.3 Comparison with observations

7.3.1 Mean winds

Observations along lines A and AA (43◦, NE-SW) and along line B (133◦, SE-NW)

in Fig. 7.2 are compared with the corresponding time-averaged quantities from the

three-dimensional simulated velocity fields. The interpolation schemes in the ARPS

post-processing plotting software were used to extract the simulation outputs. Figure

7.3 shows the wind profile at the reference site (RS), located approximately 2.8 km

southsouthwest of the hill top. In our simulations, RS is at the left edge of the domain
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Figure 7.3: Comparisons of observed wind speed profile at reference site (RS) to
simulated values from the turbulent inflow database. A logarithmic profile with u∗ =
0.654, z0 = 0.03 (as suggested by Raithby et al., 1987) is also shown.

where it is intersected by line A (instead of by line AA). The observed winds agree

well with the logarithmic profile from the turbulent inflow database, which is the

same for each simulation.

Figure 7.4 shows the observed and simulated wind speed-up ratio at 10 m above

the ground along line A. Observation data are not available more than 400 m (line A)

or 600 m (line AA) beyond the hill top. The fractional wind speed-up ratio provides

the most straight-forward comparison of the various model results and is defined as

∆S =
S(z)− SRS(z)

SRS(z)
(7.1)

where S is the horizontal wind speed and SRS is at the reference site. The speed-

up is a useful nondimensional measure often used in wind engineering for siting of

wind turbines. All the models underpredict the speed-up at the hill top, with the

TKE-1.5 results slightly better than the rest. The underprediction at the hill top is

likely caused by the fact that the peak elevation is slightly underestimated on our

grid (at 122 m, because of the grid spacing) compared to the actual elevation (126

m). The greatest difference among the models is, however, in the lee of the hill,
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Figure 7.4: Comparisons of observed velocity speed-up along line A to simulated
values using TKE-1.5, DWL and DRM-ADM0 closures. The profile of the hill is
shown at the bottom of the figure.

where intermittent separation was observed in the field (Raithby et al., 1987). The

TKE-1.5 model fails to produce the observed flow deceleration, whereas the DWL

and particularly the DRM-ADM0 results are much better. Similar speed-up results

are found along line AA (Fig. 7.5).

The effect of decreased vertical resolution can be seen in Fig. 7.6, which compares

the results using 10 m and 25 m, for ∆zmin and ∆zavg, respectively, with using 5 m

and 12.5 m (our standard case). The vertical extent of the domain is the same in

both cases. The finer resolution allows slightly increased speed-up at the top of the

hill. Vertical speed-up profiles are particularly improved by increased resolution, as

seen later in Fig. 7.11. In the lee of the hill, the TKE-1.5 results change little with

increased resolution, but they are improved for the DWL.

Fig. 7.7 compares TKE-1.5 and DWL results using a constant inflow velocity pro-

file (chosen to match data at RS) with small perturbations with the results using

turbulent inflow conditions. The speed-up ratio upstream of the hill is strongly un-

derpredicted in the cases with constant inflow. The decrease in the speed-up in the

lee of the hill appears to be better predicted using the constant inflow conditions,
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Figure 7.5: Comparisons of observed velocity speed-up along line AA to simulated
values using TKE-1.5, DWL and DRM-ADM0 closures. The profile of the hill is
shown at the bottom of the figure.

particularly for the TKE-1.5 model. Instantaneous velocity contours, however, reveal

a completely steady flow for the TKE-1.5 simulation, with only very small pertur-

bations visible (not shown); the flow does not appear fully developed with either

turbulence model. Simulations showed that particularly at lower vertical resolution,

using a constant inflow did not give satisfactory results.

The wind direction deviation from 210◦, ∆Φ, is shown in Fig. 7.8. None of the

models completely agrees with the observed wind directions, but the DWL and DRM-

ADM0 results again show improvement in the lee of the hill.

Fig. 7.9 shows the wind speed-up along line B; here the TKE-1.5 model slightly

overpredicts the wind speed-up even at the peak of the hill, whereas values were

underpredicted in Fig. 7.4. This may be because of truncation errors in the inter-

polation procedures used to extract simulation data along lines A and B. Again the

general agreement is quite good.

Vertical profiles of the wind speed-up ratio are shown at the hill top (HT) in

Figure 7.10. The speed-up ratio at the hill top is underestimated (as seen in Fig.

7.4), probably again due in part to the lower hill height in the simulations. The



164 CHAPTER 7. SIMULATIONS OF FLOW OVER AN ISOLATED HILL

−1000−800 −600 −400 −200 0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Distance from HT (m)

∆ 
S

TKE−1.5 59
TKE−1.5 31
DWL 59
DWL 31
Observed

Figure 7.6: Comparisons of observed velocity speed-up along line A to simulated
values using TKE-1.5 and DWL closures with coarse (nz = 31) and fine (nz = 59)
vertical resolution. The profile of the hill is shown at the bottom of the figure.

general trend of the speed-up profile is well reproduced by all the turbulence models,

with the shape slightly better represented by the dynamic models. The results from

the coarse resolution grid, shown in Fig. 7.11, are clearly unsatisfactory near the

ground.

Figures 7.12 and 7.13 show instantaneous vertical cross-sections from DRM-ADM0

simulations of the flow over Askervein to illustrate the intermittent separation ob-

served. In Fig. 7.12 a “gust” event is visible as the winds sweep down the lee side

of the hill. This contrasts with Fig. 7.13, where a separated flow region is observed

in the lee of the hill. Intermittent separation is a challenge for numerical simula-

tions which are particularly sensitive to the formulations chosen for the wall model

and boundary conditions. The recirculation is responsible for the strong decelera-

tion observed in the wind speed-up curves (Fig. 7.4). Clearly, accurate prediction

of the intermittent separation is related to the ability to predict the wind speed-up.

The TKE-1.5 results did not exhibit these recirculation patterns (not shown), so the

speed-up ratio is over-predicted on the lee side of the hill (see Fig. 7.4).
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Figure 7.7: Comparisons of observed velocity speed-up along line A to simulated
values using TKE-1.5 and DWL closures with turbulent or constant inflow conditions.
The profile of the hill is shown at the bottom of the figure.
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Figure 7.8: Comparisons of observed wind direction deviation from 210◦ ∆Φ along
line A to simulated values using TKE-1.5, DWL and DRM-ADM0 closures.
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Figure 7.10: Comparisons of observed velocity speed-up profile at hill top to simulated
values using TKE-1.5, DWL and DRM-ADM0 closures.
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Figure 7.11: Comparisons of observed velocity speed-up profile at hill top to simulated
values using TKE-1.5 and DWL closures with coarse (nz = 31) and fine (nz = 59)
vertical resolution.

7.3.2 Turbulence

Comparing turbulent quantities from LES and from observations in the field can be

complicated because of the different space and time averaging techniques used. The

representation in LES is by definition filtered in space, at least over the dimensions

of the grid cell. The measurements in the field are obtained at one specific location

and averaged over time. The only option is to attempt to relate the two quantities

as best as possible. One approach is to compute the total turbulent kinetic energy

(TKE) from the LES following the derivation in Appendix D of Zang (1993). The

total TKE is composed of resolved, subfilter scale, and Leonard term contributions

calculated at a given point and averaged over time. Following Zang (1993), we define

the spatially filtered Reynolds stress

eij ≈ cij+ < τij > − < Lij > (7.2)
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Figure 7.12: Vertical cross-section along line A of (a) u-velocity and (b) wind vectors
and w-velocity (only a subregion is shown) during a “gust” event, using DRM-ADM0.
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Figure 7.13: Vertical cross-section along line A of (a) u-velocity and (b) wind vectors
and w-velocity (only a subregion is shown) during a “recirculation” event, using
DRM-ADM0.
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where the brackets <> denote time averaging and

cij =< (ui− < ui >)(uj− < uj >) >=< uiuj > − < ui >< uj > (7.3)

is the resolved stress,

τij = uiuj − uiuj (7.4)

is the subfilter-scale stress (computed with a turbulence closure scheme), and

Lij = uiuj − uiuj (7.5)

is the Leonard term. Note that cij must be spatially filtered and Lij must be tempo-

rally averaged when using Equation 7.2. If planar averaging were possible (i.e. for a

domain with periodic boundary conditions), the Leonard term would disappear, leav-

ing the standard definition of the Reynolds stress (composed of resolved and subgrid

terms).

This approach was successful for Zang (1993), but attempts to include Lij here

resulted in large oscillations, likely caused by the coarse grid resolution and resulting

numerical errors in the calculation. Therefore, we define

eij ≈ cij+ < τij > (7.6)

to calculate the normal stresses and shear stresses, which consists of the more familiar

resolved plus subfilter contributions. (The cij term is filtered here but this does not

change the results much). Time averages are performed over 30 minutes using LES

data at 30 second intervals.

Figure 7.14 compares computed and observed TKE along line A. The prediction

from the DRM-ADM0 is clearly superior to the others. Note, however, that the

calculation of normal stresses is often difficult because the subgrid model contribution

can be difficult to isolate. For example, when using the Smagorinsky model, the

normal stresses are quite small because they are absorbed into the pressure term and

cannot be recovered (in an incompressible code, the subgrid TKE computed by the

Smagorinsky model is identically zero). Figures 7.15 and 7.16 compare simulated

uw and vw stresses with observations. The stresses have been rotated to be aligned
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Figure 7.14: Comparisons of observed TKE along line A to simulated values using
TKE-1.5, DWL and DRM-ADM0 closures.

with line A. The vw stress comparisons are quite good, but significant differences are

observed in the uw plots. The contribution of the subfilter-scale stresses is larger when

explicit filtering and reconstruction is used; this is consistent with the results from

flow over flat terrain in Chapter 6 (see Fig. 6.13), where the SFS stresses increased

with increasing reconstruction, and the resolved stresses decreased accordingly.

7.4 Performance of the dynamic reconstruction

models

The above results for wind speed-up and turbulent quantities indicate quite good

overall agreement between the observations and the simulations using DWL and es-

pecially DRM-ADM0. Attempts to directly increase the level of reconstruction were,

however, unsuccessful. Using DRM-ADM1 resulted in instabilities that could only be

controlled by increasing the fourth-order computational mixing. This had a strong

impact on the velocity profiles near the wall, where gradients are largest; velocities

slowed down significantly and wind speed-up predictions deteriorated.
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Figure 7.15: Comparisons of observed uw stress (rotated coordinates) along line A to
simulated values using TKE-1.5, DWL and DRM-ADM0 closures.
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Figure 7.16: Comparisons of observed vw stress (rotated coordinates) along line A to
simulated values using TKE-1.5, DWL and DRM-ADM0 closures.
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The performance of the dynamic reconstruction model is very sensitive to the

calculation of the dynamic coefficient in the Wong-Lilly model. An indication that

the dynamic model struggles with flow over terrain can be seen in Fig. 7.17, showing

contours of the dynamic eddy viscosity. Very near the wall (k = 1), the dynamic

coefficient often becomes locally negative, so there is a considerable amount of clipping

applied to reset large negative eddy viscosity to -1.5×10−5 for stability reasons (see

Chapter 6). Further from the wall (k = 10), the percentage of clipping required

is much smaller. Tests of the DWL alone over very complex terrain (see Chapter

8 on simulations in the Riviera valley) showed very large amounts of clipping and

ultimately resulted in instabilities.

Iizuka & Kondo (2003) also had difficulty with the dynamic Smagorinsky model in

simulations over a 2D laboratory-scale hill, where the model failed to reproduce the

expected recirculation patterns. The authors cited the dynamic model underestima-

tion of the eddy viscosity very near the wall as a key reason for the poor performance

of the model over terrain. Given that our full-scale hill terrain is neither smooth, nor

two-dimensional, it is not surprising that we experience further difficulties with the

dynamic model.

Figure 7.18 shows sample vertical profiles of the instantaneous and time-averaged

eddy viscosity at three locations along line A. The first 5-6 points above the wall

exhibit the same pattern observed by Iizuka & Kondo (2003); the eddy viscosity is

underpredicted because of difficulties in the dynamic procedure previously cited in

the neutral boundary layer simulations in Chapter 6.

Iizuka & Kondo (2003) proposed a hybrid dynamic-static Smagorinsky model,

which uses eddy viscosities from the standard static model at points near the wall

where the eddy viscosity is underpredicted. This hybrid approach augmented the

eddy viscosity near the wall and allowed the expected recirculation patterns to form

in the lee of their hill. Figure 7.19 shows the wind speed-up ratio along line A

for a similar hybrid approach, where we use static Smagorinsky at the lowest six

levels (chosen based on the curves in Figs. 7.18), and the dynamic Wong-Lilly eddy

viscosity elsewhere (DWL-SMAG or DRM-SMAG). The predicted speed-up is not

as good as previous results from the DRM-ADM0 simulations, but the prediction of

flow deceleration in the lee of the hill improves with increasing reconstruction (from

DWL-SMAG to DRM-SMAG-ADM1).
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Figure 7.17: Instantaneous contours of eddy viscosity νT (m2/s) after clipping is
applied for DRM-ADM0 with two local test filters, at (a) k = 1 and (b) k = 10.
Clipping is indicated by the enclosed white regions with a value of -1.5×10−5.
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Figure 7.18: Profiles of the dynamic eddy viscosity from DRM-ADM0 results at (a)
reference site, (b) on the up-slope of the hill, (c) in the lee of the hill.
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All the simulations using DRM include the near-wall stress model introduced in

Chapter 6, using a proportionality factor Cc = 0.5 and a layer height hc = 4∆x. This

near-wall stress is intended to provide much of the “missing” stress near the wall, but

it appears to be too little, as the hybrid approach is needed to stabilize the simulations

when higher reconstruction is used. Figure 7.20 compares the speed-up ratio along

line A for different near-wall stress coefficients. Increasing the proportionality factor

means increasing the near-wall stress contribution (see Chapter 6). The greatest

difference among the speed-up curves is again in the lee of the hill, where increasing

Cc prevents the wind from speeding up as quickly in the lee of the hill. The results

with Cc = 0.8 look similar to those from DWL-SMAG, but the effect of the near-wall

stress contribution is not enough to stabilize the simulations with higher levels of

reconstruction. Tests with DRM-ADM1 and Cc = 0.8 and even up to 0.95 failed.

The effect of the near-wall stress and near-wall Smagorinsky contributions can be

seen in Fig. 7.21 which shows wind speed profiles upstream of the hill. Increasing Cc

adds near-wall stress and smooths the near-wall velocity profiles, as does the use of the

Smagorinsky model near the wall. Figure 7.22 shows that at the hill top, increasing

near-wall stress or using near-wall Smagorinsky improves the speed-up ratio at the

first point above the wall. The results with Cc = 0.2 show a strange speed-up profile

here, likely because the near-wall stress contribution is not adequate.

7.5 Conclusions

Large-eddy simulations of flow over Askervein Hill, an isolated hill in Scotland, were

compared to the field observations of Taylor & Teunissen (1987). This flow is a

challenging test for the reconstruction turbulence models which gave improved re-

sults for neutral boundary layer flow over flat terrain. This is the first time, to our

knowledge, that reconstruction (scale-similarity) or dynamic turbulence models have

been applied to full-scale simulations of the atmospheric boundary layer over terrain.

Simulations with the lowest level of reconstruction are straightforward and showed

improvement for wind speedup-ratios over the hill, when compared to results from

the standard TKE-1.5 model. Predictions of turbulent kinetic energy were also im-

proved. Results were not as clear for the uw and vw stress components. Increased
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Figure 7.19: Comparisons of observed and simulated velocity speed-up along line
A using DRM-ADM0, DWL-SMAG, DRM-SMAG-ADM0, and DRM-SMAG-ADM1
closures.
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Figure 7.20: Comparisons of observed and simulated velocity speed-up along line A
using DWL with increasing near-wall stress coefficients, Cc = 0.2, 0.5 (standard case),
and 0.8, compared to results from DWL-SMAG using Smagorinsky near the wall and
Cc = 0.5.
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Figure 7.22: Comparisons of velocity speed-up ratio vertical profile at HT using DWL
with increasing near-wall stress coefficients, Cc = 0.2, 0.5 (standard case), and 0.8,
compared to results from DWL-SMAG using Smagorinsky near the wall and Cc = 0.5.
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levels of reconstruction (beyond level 0) present difficulties and required modifica-

tion of the closure model near the ground. This was in part because the dynamic

procedure underpredicts the stress near the wall over rough surfaces. While all of

the simulations using reconstruction also included a near-wall stress component, this

was not sufficient to prevent instabilities. We adopted the hybrid approach of Iizuka

& Kondo (2003), using the static Smagorinsky model in the lowest levels near the

wall and the dynamic approach above. The specification of this static Smagorinsky

layer was based on profiles of the dynamic eddy viscosity, however, the appropriate

transition level from static to dynamic requires further study. The results, though

promising, show that problems with the behavior of closure models in this sensitive

near-wall region of the flow have not been completely solved.



Chapter 8

Large-eddy simulations of flow in a

steep Alpine valley∗

This chapter investigates the steps necessary to achieve accurate simulations of the

flow and temperature fields in the Riviera Valley, a steep Alpine valley in southern

Switzerland. We address several challenges for numerical simulations in such complex

terrain. High-resolution land use and soil moisture datasets, modifications to account

for topographic shading, and careful selection of grid nesting parameters are necessary

to achieve good agreement with observation data. Even with strong local forcing, the

onset and magnitude of the up-valley winds are highly sensitive to surface processes

in areas which are well outside the high-resolution domain. Dynamic reconstruction

turbulence models are also evaluated in this flow (with the near-wall stress model and

modifications for steep terrain in Chapters 6 and 7). The influence of the turbulence

model in the Riviera is limited to a shallow layer near the surface. The sensitivity to

changes in the turbulence model is much smaller than the impact of changes to the

soil moisture initialization. Further research is required to quantitatively evaluate the

performance of the new turbulence models in this complex flow.

∗This chapter is an expanded version of the paper entitled “High-resolution large-eddy simulations
of the Riviera Valley: methodology and sensitivity studies” by Fotini Katopodes Chow (the principal
author), Andreas P. Weigel, Robert L. Street, Mathias W. Rotach, and Ming Xue, published in the
proceedings of the 11th Conference on Mountain Meteorology, American Meteorological Society, June
2004 (Chow et al., 2004b). A companion paper entitled “High-resolution large-eddy simulations of
the Riviera Valley: assessment of the flow structure and the heat and moisture budgets” by Andreas
P. Weigel (the principal author), Fotini Katopodes Chow, Mathias W. Rotach, Robert L. Street,
and Ming Xue, will not be presented here (Weigel et al., 2004b).

180
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8.1 Introduction and background

Increases in available computational power now allow high-resolution simulations of

flow over complex terrain. Such simulations are needed for local weather prediction

and air pollution modeling. Knowledge of drag effects and turbulence due to complex

terrain is also necessary for global climate models. The appropriate numerical and

physical parameters required by high-resolution simulations are, however, not gener-

ally known. The influence of parameterizations such as those used for turbulence, soil

moisture, solar radiation, surface roughness, the configuration of initial conditions,

lateral boundary conditions, and the choice of numerical grids is highly situation de-

pendent. Simulations are generally performed using “the best available” information

and datasets.

The situation is further complicated in highly complex terrain such as the Eu-

ropean Alps, because the available parameterizations in numerical simulations are

largely based on theory and observations over flat terrain. For example, steep moun-

tain slopes affect incoming radiation by casting shadows on the neighboring terrain,

and valleys act to increase local incoming longwave radiation during the night. Nei-

ther effect is included in traditional numerical codes because these effects are over-

shadowed by other, larger errors at the usual low spatial resolutions. However, steep

slopes in the Alps require fine grids to resolve the appropriate terrain features. In-

creasing the grid resolution is generally straightforward, but the radiation scheme is

now no longer sufficient to model the physical processes that occur in a steep val-

ley. In addition, accompanying high-resolution surface datasets are scarce, and grid

nesting causes difficulty where domain edges cut through mountains. Finally, the in-

fluence of turbulence parameterizations can become significant over complex terrain,

particularly near the rough bottom boundary.

This chapter investigates the steps necessary to achieve accurate simulations of

the flow and temperature fields in the Riviera Valley, located in the Alps in south-

ern Switzerland. Our simulation tool is the Advanced Regional Prediction Sys-

tem (ARPS), a non-hydrostatic, compressible large-eddy simulation code written for

mesoscale and small-scale atmospheric flows (Xue et al., 2000, 2001). We show that

a straightforward grid nesting approach is not able to accurately reproduce the ob-

served valley winds and circulations from the MAP-Riviera project field campaign of
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1999. Rather, careful initialization using high resolution land use and soil moisture

data, as well as improved turbulence models, among other considerations, are nec-

essary to achieve satisfactory results. The sensitivity of the simulations to changes

in these numerical settings is explored by comparing the results to observation data

from soundings and surface station measurements obtained in the Riviera Valley. It

is found that the onset and magnitude of up-valley winds are highly sensitive to mois-

ture and radiation processes in areas well outside the high-resolution domain. These

processes are inadequately resolved on the coarser grid of the previous nesting level,

and directly influence the flow structure in the high-resolution domain via its lateral

boundary conditions.

Ultimately, the goal is to simulate accurately the physical processes in this complex

valley region and to improve understanding of valley flow physics. The simulations

are not intended to be used as forecasts, per se, because field observations have been

incorporated at the coarsest resolutions. This allows more accurate representation

of the actual flow physics. This work focuses on the numerical aspects of the large-

eddy simulation needed to accurately represent the Riviera Valley flow. The physical

and meteorological features of our simulated valley flows are described in Weigel et al.

(2004b) where comparisons are also made to aircraft flight data in exploring the onset

of up-slope and down-slope winds, along-valley wind transitions, secondary cross-

valley circulations, and heat budget analyses. Figures showing the three-dimensional

structure of the valley atmosphere and its evolution during the day are, however,

included here for completeness.

8.1.1 Previous numerical work

Obtaining accurate simulations of flow in highly complex terrain has been the object

of much research. At relatively coarse resolution, a large domain can be studied, but

steep mountains and valleys cannot be resolved. Benoit et al. (2002), for example,

performed 14 km and 3 km resolution real-time simulations of the entire European

Alps during the MAP special observing period. Lu & Turco (1995) and Jacobson

(2001) simulated flow over complex terrain in California at approximately 5 km res-

olution. At finer resolution, the topography is better resolved and the slopes become

steeper, creating new difficulties. The simulations of Gronas & Sandvik (1999) of a
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narrow valley in Norway and of Revell et al. (1996) of the New Zealand Alps region,

for example, failed to reproduce the winds observed in the field. These simulations

suffered from poor resolution and turbulence closures and did not incorporate synop-

tic data or land surface data.

More recently, Zhong & Fast (2003) compared simulations of the Salt Lake Valley

region from three mesoscale models initialized with synoptic data. All three models

(RAMS, MM5, and Meso ETA) were able to capture the general features of the valley

flows as seen from observations, however, the details of the local circulations and

vertical structure of the flow were not sufficiently well reproduced. These simulations

were performed at relatively fine spatial resolution for mesoscale models; RAMS and

MM5 were nested down to horizontal grid resolutions of 0.56 km; Meso ETA used

a single grid with 0.85 km grid spacing. The results showed that relatively large

forecast errors existed despite the increased resolution. The authors suggested that

improvement in the parameterizations of the surface energy budget, vertical mixing,

and radiation may improve the simulations’ representation of the thermodynamic

structure and circulations within the Salt Lake Valley.

Many studies point to increased grid resolution as a means to achieve better agree-

ment with observations (see e.g. Revell et al. (1996); Gronas & Sandvik (1999); Grell

et al. (2000)). Hanna & Yang (2001) suggest that errors in wind speed and direction

in their simulations with four different mesoscale codes are due to errors in the repre-

sentation of turbulent motions, as well as to subgrid features in the topography and

land use. They then suggest that it is unlikely that model errors can be reduced any

further. On the contrary, their observations provide motivation for increasing grid

resolution and improving subgrid parameterization models.

Previous simulations in the Riviera Valley region have been few. Grell et al. (2000)

simulated a southern part of the Swiss Alps which included the Riviera Valley, using

MM5 and RADM2 (for chemistry) with a horizontal resolution of 1 km to examine

the advection of pollutants into Alpine valleys. Their focus, however, did not lie

on the Riviera, but on the neighboring Mesolcina Valley. Detailed comparisons to

observation data were not presented, but again the authors state that higher spatial

and temporal resolution is needed to represent the atmospheric chemistry processes

accurately.

Further increasing the grid resolution, however, is not always the solution. Zängl
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et al. (2004) and Gohm et al. (2004) simulated foehn winds in the Wipp and Rhine

Valleys, respectively, using MM5. Despite using resolutions as fine as 267 m in the

horizontal, Gohm et al. (2004) found discrepancies between the simulations and the

observations; e.g., the model predicted a shallow foehn wind occurrence that was not

observed. The authors pointed to the need for high-resolution representation of the

surrounding topography. Zängl et al. (2004) found that the effect of the horizontal

computational mixing was larger than the effect of increased resolution. Their model

performed better with an improved computational mixing scheme at coarse resolution

(3 km) than at fine resolution (1 km) with the traditional mixing scheme. Neverthe-

less, the predictions of the onset of foehn winds in the Rhine Valley were still delayed

by two hours from the observed time.

Simulations of the Riviera Valley, for the same time period as that studied here,

were performed by De Wekker et al. (2004) using the RAMS model (in RANS mode).

Two-way grid nesting with grid spacings down to 333 m gave relatively good agree-

ment with the observed potential temperature fields, but the numerical model did

not to capture the wind structure of the valley very well. Consistent up-slope and

up-valley winds were not apparent. Our simulation setup had many similarities to

that of De Wekker et al. (2004), as discussed below.

8.1.2 Objectives for the present numerical simulations

The goal of this chapter is to evaluate the performance of large-eddy simulation using

very fine resolution (down to 150 m horizontal spacing) for representing the three-

dimensional flow structure over highly complex terrain. All of the studies mentioned

above used RANS formulations, not LES closures for their simulations. LES separates

resolved and turbulent motions using a length scale (the width of the explicit spatial

filter). The differences between LES and RANS become small when similar space

and time resolutions are used. However, we prefer the LES formulation for studies of

turbulent flows because it is clear which physical features (length scales) are resolvable

and which must be modeled.

Simulations of the Riviera Valley are complicated by the complex terrain, the low

resolution of regional datasets available for initialization, numerical discretization and

lateral boundary condition errors, and other issues. Several steps have been taken to
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address these numerical challenges. The numerical setup and grid nesting approach

are described in detail below. In particular, we investigate the effects of soil moisture,

land use data, grid resolution, topographic shading, and turbulence closure models.

8.2 MAP-Riviera project flow conditions

The Riviera Valley is a medium-sized valley located between the towns of Biasca and

Bellinzona in the province of Ticino in southern Switzerland (see Fig. 8.1). The val-

ley is about 15 km long and about 1.5 km wide at the valley floor. Valley side walls

have slopes of 30-35◦ and the surrounding peaks reach altitudes of up to 2700 m asl.

The valley was the focus of an extensive field campaign, the MAP-Riviera Project

(Rotach et al., 2004), which was part of the larger Mesoscale Alpine Programme

(MAP) conducted in the autumn of 1999 (Bougeault et al., 2001). The campaign’s

objective was to investigate flow structure and turbulence characteristics in a typi-

cal, medium-sized Alpine valley. The field data include measurements from surface

stations, radiosondes, meteorological towers, and aircraft flights, among others. The

relatively large number of field measurements from the MAP-Riviera project is use-

ful for detailed comparison to numerical simulations because of their good spatial

and temporal resolution relative to measurements available from operational surface

stations over longer time periods.

The Riviera Valley is located on a highly-trafficked route that connects to the

Gotthard tunnel to the northwest through the Leventina Valley (see Figs. 8.2 and

8.3). Local populations have enacted legislation and are debating further measures

to regulate truck traffic in an attempt to mitigate air and noise pollution. Several

studies of air and noise pollution found that the heavy truck traffic and the narrow

valleys combine to create a situation with worse air pollution than in the city of

Zurich at peak periods (see e.g. BUWAL, 2002). Of interest, therefore, in the valley

flow evolution are the transitions of slope and along-valley winds and the vertical

structure of the atmosphere, which determine mixing and transport of near-surface

pollutants.

Weigel & Rotach (2004) analyzed field data collected during the “convective” days

of the MAP-Riviera campaign. These convective days are dominated by thermal

forcing which drives the valley and slope winds and are the focus of the simulations
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Figure 8.1: (a) Map of Switzerland, showing contours of elevation (m). Box outlines
the Riviera region, shown in detail in (b). Note that axes are stretched.
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Figure 8.2: Aerial view of the Riviera Valley from a postcard (No. 207, Edizioni Alfa
S.A., 6616 Losone), looking north from Bellinzona. The Gotthard tunnel is to the
northwest of Biasca.
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in this chapter. On days with such strong thermal forcing, it is hoped that flow

in the valley will not be determined by synoptic conditions, i.e., that the slope and

valley wind system will develop within the valley and will be sensitive to the local

surface conditions that determine heating and cooling. Even on such convective days,

however, synoptic conditions can influence the transition of the valley wind system.

Weigel & Rotach (2004) determined that the prevailing synoptic wind direction affects

the strength of the up-valley winds that occur in the afternoon. Barr & Orgill (1989)

also noted that the details of valley drainage winds were affected by the external

meteorology in virtually every case they observed, to a lesser or greater extent that

depended on the penetration of the synoptic winds above the valley mountain ridges

into the core of the valley flow.

Numerical simulations of convective days in the Riviera Valley cannot, therefore,

ignore the external meteorology, but must include it as the background in which the

valley winds occur. A numerical model should be able to use synoptic information to

accurately determine the evolution of the boundary layer dynamics within the valley

itself. We have simulated the convective days of August 21, 22 and 25, 1999. We focus

on August 25, 1999 in this chapter because wind data were missing from radiosondes

on August 21 and 22. Weather maps and a satellite image shown in Fig. 2.3 of De

Wekker (2002) indicate a northwesterly synoptic flow and cloudless skies on August

25. After determining the best simulation setup for August 25, where quantitative

comparisons could be made for both wind and temperature fields, simulations of Au-

gust 21 and 22 were performed. A companion paper synthesizes the results from

August 21 and 22 to provide a broader context for an accurate numerical depiction

of the valley wind system in the Riviera (Weigel et al., 2004b). The simulations show

that not only are the valley dynamics on convective days determined by surface con-

ditions, but also by the prevailing winds and regional atmospheric structure outside

of the local Riviera Valley domain.

8.3 Numerical simulation setup

This section describes the procedures used to achieve accurate simulation of atmo-

spheric flow in the Riviera Valley. The steps taken include the use of high-order
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Run name Configuration
REF Reference simulation set, simple grid nesting with no ad-

ditional data.
MOISLU Additional data incorporated. 1 km grid level uses

elevation-dependent soil moisture, and 350 m grid uses
WaSiM soil moisture and 100 m land use data.

MOIS Same as MOISLU but with interpolated low-resolution
landuse data for all grids.

MOISLU-NS Same as MOISLU but with no topographic shading for
all grids.

MOISLU-NOTURB Same as MOISLU but with no turbulence model at the
350 m grid.

MOISLU-DRM Same as MOISLU but with DRM turbulence model vari-
ations at the 350 m grid.

MOISLU2 Same as MOISLU but 1 km grid uses extrapolated
WaSiM soil moisture data. 350 m grid uses WaSiM soil
moisture and 100 m land use data.

Table 8.1: Riviera Valley simulation configurations.

numerical methods, carefully selected grid nesting parameters, high-resolution sur-

face data, modifications to the radiation model, and improved turbulence closure

methods. The standard “acceptable” procedure, using grid nesting, standard initial

conditions, and standard surface datasets, provides a reference for comparison with

the enhanced simulation approach and for sensitivity studies showing the effect of

each new component. Table 8.1 lists the various simulation configurations.

8.3.1 Large-eddy simulation code

ARPS was developed at the Center for Analysis and Prediction of Storms at the

University of Oklahama, and is formulated as an LES code that solves the three-

dimensional, compressible, non-hydrostatic, filtered Navier-Stokes equations. ARPS

is described in detail by Xue et al. (1995, 2000, 2001) (see also Appendices C and D);

so we only mention the relevant settings for this application.

Fourth-order spatial differencing is used for the advection terms. Temporal dis-

cretization is performed using a mode-splitting technique to accommodate high-

frequency acoustic waves. The large time steps (∆t) use the leapfrog method; first-

order forward-backward explicit time stepping is used for the small time steps (∆τ),
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Grid size (nx, ny, nz) ∆x, ∆y ∆zmin ∆zavg Domain height ∆t/ ∆τ
103× 103× 53 9 km 50 m 500 m 25 km 10 s /10 s
103× 103× 53 3 km 50 m 500 m 25 km 2 s / 4 s
99× 99× 63 1 km 50 m 400 m 24 km 1 s / 1 s
83× 83× 63 350 m 30 m 350 m 21 km 1 s / 0.2 s
83× 99× 83 150 m 20 m 200 m 16 km 0.5 s / 0.05 s

Table 8.2: Nested grid configurations.

except for terms responsible for vertical acoustic propagation, which are treated semi-

implicitly. Simulations were performed on parallel processors (using MPI) on IBM

SP machines at NCAR’s Scientific Computing Division. Appendix G gives details on

computational cost.

8.3.2 Grid nesting and topography

Five one-way nested grids were used to simulate flow in the Riviera Valley at hori-

zontal resolutions of 9 km, 3 km, 1 km, 350 m, and 150 m. The Riviera Valley first

becomes reasonably well resolved at 350 m resolution (see the wavelet analysis of De

Wekker, 2002). Details of the simulation domains are listed in Table 8.2. Figure 8.3

shows the topography for the 1 km, 350 m, and 150 m subdomains.

Warner et al. (1997) provide guidelines for setting up nested simulations to mini-

mize contamination by lateral boundary condition choices. Perhaps the most impor-

tant is that the flow region of interest should be as far as possible from the domain

boundaries, i.e., in the center of the domain. All grids were centered on the Riviera

Valley at 46.2881 N, 9.002 E, except for the 150 m resolution grid centered on 46.2547

N, 9.0117 E. A Lambert conformal map projection was used with the “true” latitude

and longitude chosen very close to the center of the domain to minimize distortion at

the center of the grid, particularly for the smaller domains.

Topography for the 9 km through 1 km grids was obtained using the USGS 30 arc

second topography datasets available through ARPS. The 350 m and 150 m resolution

terrain data were extracted from a 100 m dataset available for all of Switzerland

(Volkert, 1990). For each nested subdomain the terrain is smoothed near the domain

boundaries to match the elevations from the surrounding coarser grid.
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8.3.3 Vertical resolution and grid aspect ratio

ARPS uses a terrain following σ-coordinate system (see Section 2.2.2). The minimum

vertical grid spacings at the surface are listed in Table 8.2. The grid is stretched

using a tanh function to yield an average spacing of ∆zavg and a domain height of

∆zavg(nz − 3). High vertical resolution is needed to resolve the vertical structure of

the atmosphere, but if the grid aspect ratio (∆x/∆z) becomes too large, numerical

errors become large, particularly in the horizontal gradient terms (Mahrer, 1984).

Poulos (1999) and De Wekker (2002) also found that the grid aspect ratio had to be

small, especially for steep terrain. Increasing the vertical resolution too much, for

example, leads to instabilities. Finally, LES also requires a small aspect ratio so as

to avoid distortion of resolved eddies (Kravchenko et al., 1996).

Because of the large domain sizes considered here, we must compromise on one

or more of the above guidelines. Indeed, at 9 km resolution the aspect ratio is

180 at the surface. We presume, however, that the general scales of the resolved

flow and topography are large enough at those resolutions, that together with the

parameterizations in the TKE-1.5 turbulence closure (see Section 8.3.7), they will be

reasonably represented. Tests with larger values of ∆zmin for the large grids degraded

the representation of the vertical structure. The best possible aspect ratios have

therefore been adopted. Particularly for the fine resolution grids, we avoid increasing

the aspect ratio more than is necessary; the grid at 350 m resolution has a much

reduced aspect ratio of 7.

8.3.4 Initialization and lateral boundary conditions

To obtain realistic initial and boundary conditions, data from the European Centre for

Medium-Range Weather Forecasts (ECMWF) were used to force ARPS simulations

at the coarsest resolution (9 km).∗ (Starting with a 27 km resolution grid and then

nesting to the 9 km grid did not improve results.) ECMWF analyses are given

at six-hour intervals with 0.5 degree (approximately 60 km) horizontal resolution

and 50 vertical levels. Details of the ECMWF forecast model and analysis data

are available at http://www.ecmwf.int. ARPS pre-processing software was used to

∗Attempts were also made to use MC2 data to initialize simulations (on October 1, 1999), but
this was not pursued further.
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generate initial conditions at 1800 UTC on August 24, 1999. Lateral boundary forcing

used the ECMWF data at six-hour intervals, linearly interpolated to intermediate

times. Relaxation towards the lateral boundary values was applied to a 5-10 grid-cell

zone around the edge of the domain. Simulations continued for 30 hours beginning at

1800 UTC August 24. Output stored at hourly intervals was used to generate initial

and boundary condition files for subsequent nested grid simulations. The effects of

changing the update intervals for the lateral boundaries are left for future research

(see e.g. the work of Nutter et al., 2002).

The ECMWF initialization data compare fairly well with nearby soundings, e.g. in

Milan, Italy and Payerne, Switzerland, outside of the Alps, but because of poor ver-

tical resolution cannot capture the pronounced inversion observed in the radiosonde

data on August 25, 1999 (see Fig. 8.11 later). The inversion was likely created by

strong regional subsidence and persisted throughout the August 25 simulation pe-

riod, therefore separating the dynamics of the lower 2 km within the valley from

the regional flow above. Tests were performed using the ARPS data assimilation

system (ADAS) to refine the vertical structure of ECMWF data based on European

radiosonde observations. The data assimilation improved the results with regard to

surface potential temperature, but had some detrimental effects on the predicted ve-

locities for August 25. The results presented here therefore do not use ADAS. Results

for August 21 and 22, 1999, however, benefited greatly from the ADAS initialization;

this is likely due to the more complex nature of the synoptic conditions on those days

which included some cloud cover (Weigel & Rotach, 2004).

The use of ADAS is described further here for the reader’s information, as it

was used in the simulations of August 21 and 22 presented in the companion pa-

per (Weigel et al., 2004b). We used ADAS to incorporate more observational data

into the simulation at the coarsest resolution (9 km). Radiosonde data through-

out Europe were obtained at six-hourly intervals from the Radiosonde Data Archive

(http://raob.fsl.noaa.gov/) maintained by the Forecast Systems Laboratory (FSL)

and the National Climatic Data Center (NCDC). About 60 soundings are available

in our 9 km domain at 0000 and 1200 UTC and about half as many at 0600 and 1800

UTC. Data assimilation was performed using the background field provided by the

ECMWF data. The vertical range over which the background fields were forced to

match the observation data was adjusted using the zrang parameter in ADAS. The
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range was chosen to be 400, 300, 200, 100 for each of the four passes, respectively.

This is a restrictive fine fit, but was found to be necessary to capture the vertical

features in the potential temperature sounding data. The modified background fields

(ECMWF data adjusted to sounding data) were then used as the initial and lateral

boundary conditions to drive the 9 km resolution simulations. The simulation was re-

laxed toward the observations for all time at this resolution, to ensure that the strong

inversion was not mixed out over time. The 9 km grid thus provided more vertical

structure for the boundaries of the finer grids where no data assimilation was used.

The vertical structure of the potential temperature, in particular, is significantly im-

proved. The simulation results, however, were poor with regard to the velocity fields

for August 25 so ADAS was not used on this date.

8.3.5 Surface characteristics

The characteristics of the land surface determine sensible and latent heat flux ex-

change with the atmosphere. The ARPS land-surface soil-vegetation model solves

surface energy and moisture budget equations, described in detail in Xue et al. (1995,

2001). ARPS normally uses 13 soil types (including water and ice), and 14 vegetation

classes (following the United States Department of Agriculture classifications). Land

use, vegetation, and soil type data for the 1 km and coarser grids are obtained from

USGS 30 second global data. The ARPS surface data pre-processor was modified to

include this finer resolution data; the standard version only included data at 10 min

(approximately 20 km) resolution.

For the higher resolution grids (350 m and finer), we have modified the ARPS

surface data classes to incorporate even finer resolution surface data. Land use and

soil type data are available for all of Switzerland at 100 m resolution from the Land-

nutzungskarte des Bundesamts für Statistik and the Digitale Bodeneignungskarte der

Schweiz (GEOSTAT). The dataset includes 69 land use categories, which have been

mapped to a new set of 30 vegetation and 14 soil types (see Tables 8.3 and 8.4), as

done by De Wekker (2002) for RAMS. Different values, however, have been assigned

in ARPS for the roughness length, leaf area index and vegetation fraction. A new

soil type was added to represent bare rock, which makes up a significant portion of

the mountain tops. The new vegetation and soil types provide much more detailed
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local land coverage compared to the 30-second data (see Fig. 8.4).

For the soil temperature and moisture budgets, two soil layers of depths 0.01 m

and 1.0 m for the surface and deep soil are used. Soil temperature for all grids was

initialized as a constant offset from the near-surface air temperature: 0.6 K for the

top layer and -2.1 K for the deep soil. The selected offset was based on observations

in the Riviera Valley. Soil moisture data for the 9 km resolution grid was initialized

from ECWMF data, which in the Alps range from 0 (rocky and glacial areas) to

0.37 m3m−3. The deep soil is slightly wetter than the top layer. The area near the

Riviera Valley has values of about 0.35 m3m−3 (surface) and 0.366 m3m−3 (deep),

except for the rocky outcroppings. The soil moisture values at 9 km resolution are

then interpolated to the 3 km resolution grid. For the REF simulations (see Table

8.1), these ECMWF data are further interpolated to the 1 km and 350 m resolution

grids.

For the MOISLU and other simulations, high-resolution soil moisture initialization

data were obtained to represent the spatial variability in the Riviera Valley better.

For this purpose, we followed De Wekker et al. (2004) and used the Water Flow and

Balance Simulation Model (WaSiM-ETH) (Jasper, 2001; Schulla et al., 2004; Jasper

et al., 2004) to obtain soil moisture information. This hydrologic model is driven

by meteorological data such as air temperature and precipitation and provided 100

m resolution data for the catchment region of the Riviera. The WaSiM simulation

was performed from January 1, 1999 until August 24, 1999 at 1800 UTC at which

time the output was used to initialize the soil moisture in ARPS. Figure 8.5 shows

the distribution of soil moisture for the two layers used at the 350 m grid level at

1800 UTC. The soil is wetter on the valley floor, significantly drier on the steep

surrounding slopes, and zero on the rocky peaks of the mountains and in urban areas

(e.g. in Bellinzona and Biasca). In the upper soil level, the WaSiM data have moisture

values which are comparable to the ECMWF data (∼ 0.32 m3m−3). At the deep soil

level (where there are no plant roots to hold water) the WaSiM moisture on the steep

slopes is very low (0.08-0.12 m3m−3), but on the valley floor it is still relatively high

(∼ 0.25 m3m−3).

The availability of WaSiM data is certainly helpful, as soil moisture observations

are hard to find. A few measurements were taken in the Riviera Valley during the

field campaign (Zappa & Gurtz, 2003), and these compare quite well with the WaSiM
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Y Class Description LAI Veg. Frac. z0 (m) rsmin (s/m) rgl (W/m2) Swiss class
1 Evergreen needleleaf tree 6 (d) 0.8 (b) 1 (b) 175 (d) 30 (c) 12,13 (> 1000 m asl)
2 Deciduous needleleaf tree 5 (d) 0.8 (b) 1 (b) 175 (d) 30 (c) —
3 Deciduous broadleaf tree 5 (d) 0.8 (b) 0.8 (b) 200 (d) 30 (c) 12,13 (< 1000m asl)
4 Evergreen broadleaf tree 5 (d) 0.9 (b) 2 (b) 120 (d) 30 (c) —
5 Short grass 2 (b) 0.8 (b) 0.02 (b) 40 (a) 100 (c) 83-89
6 Tall grass 3 (x) 0.8 (b) 0.1 (b) 83 (d) 100 (c) —
7 Desert 0 (b) 0.01 (x) 0.05 (b) 999 (a) 100 (c) —
8 Semi-desert 1.5 (x) 0.1 (b) 0.1 (b) 300 (a) 100 (c) —
9 Ice 0 (b) 0.1 (a) 0.005 (a) 999 (a) 100 (c) —
10 Tundra 1 (d) 0.2 (d) 0.04 (b) 500 (a) 100 (c) —
11 Evergreen shrub 3 (d) 0.8 (b) 0.1 (b) 200 (d) 30 (c) —
12 Deciduous shrub 3 (d) 0.8 (b) 0.1 (b) 200 (d) 30 (c) —
13 Mixed woodland 5 (d) 0.8 (b) 0.8 (b) 200 (d) 30 (c) —
14 Water 0 (b) 0 (a) 0.001 (a) 0 (E-30) (a) 100 (c) 91,92
15 Crop/mixed farming 3 (d) 0.85 (b) 0.06 (b) 70 (d) 100 (c) 71,72,75-78
16 Irrigated crop 3 (d) 0.8 (b) 0.06 (b) 60 (d) 100 (c) —
17 Bog or marsh 4.5 (x) 0.8 (b) 0.03 (b) 5 (a) 100 (c) 69,95,96
18 Evergreen needleleaf forest 6 (d) 0.8 (b) 0.98 (b) 175 (d) 30 (c) 10,11,14 (> 1000m asl)
19 Evergreen broadleaf forest 5 (d) 0.9 (b) 2.2 (b) 120 (d) 30 (c) —
20 Deciduous needleleaf forest 5 (d) 0.8 (b) 0.92 (b) 175 (d) 30 (c) —
21 Deciduous broadleaf forest 5 (d) 0.8 (b) 0.91 (b) 200 (d) 30 (c) 10,11,14 (< 1000m asl)
22 Mixed cover 5 (d) 0.8 (b) 0.87 (b) 175 (e) 30 (c) —
23 Woodland 5.7 (e) 0.8 (b) 0.83 (b) 174 (e) 30 (c) 15,19
24 Wooded grassland 5 (e) 0.8 (b) 0.51 (b) 169 (e) 30 (c) 17,18
25 Closed shrubland 5 (e) 0.6 (b) 0.14 (b) 175 (e) 30 (c) 16
26 Open shrubland 3 (x) 0.2 (b) 0.08 (b) 179 (e) 100 (c) —
27 Grassland 2.6 (e) 0.8 (x) 0.04 (b) 83 (d) 100 (c) 73,81,82,97
28 Cropland 3 (x) 0.8 (b) 0.11 (b) 65 (x) 100 (c) —
29 Bare ground 0.1 (x) 0.07 (b) 0.05 (b) 999 (x) 100 (c) 99
30 Urban and built up 2 (d) 0.4 (d) 0.8 (b) 150 (d) 100 (c) 20-68,70

Table 8.3: Land use conversion from 69 Swiss categories to 30 new ARPS categories. Courtesy of Andreas Weigel. LAI (leaf area
index), vegetation fraction, z0 (roughness length), “rsmin” (surface resistance), and “rgl” (solar radiation dependence) are used by
ARPS to characterize each surface type. Swiss land use classes are defined in Table A2.3 of De Wekker (2002). (a) ARPS values;
(b) LEAF-2 values as used in RAMS by De Wekker (2002); (c) Noilhan & Planton (1989); (d) Xiu & Pleim (2001); (e) LDAS-data
(http://ldas.gsfc.nasa.gov/LDAS8th/MAPPED.VEG/web.veg.table.html); (x) Estimate based on comparison of various sources.
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Figure 8.4: Contours of (a) vegetation type and (b) soil type at 350 m resolution
using the 100 m land use dataset. Definitions of the vegetation and soil types are
given in Table 8.4.
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Figure 8.5: Contours of soil moisture (m3/m3) at (a) upper and (b) lower levels at
350 m resolution using WaSiM values.
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Class Description
01 Sand
02 Loamy sand
03 Sandy loam
04 Silt loam
05 Loam
06 Sandy clay loam
07 Silty clay loam
08 Clay loam
09 Sandy clay
10 Silty clay
11 Clay
12 Ice
13 Water
14 Rock

Table 8.4: Soil types used in the high-resolution Riviera simulations. Class 14 was
added to accommodate the peaks of the Alpine mountains and is not included in the
standard soil classes in ARPS.

values. For example, at 1200 UTC, measurements at site A1 (see Fig. 8.3) showed

the soil moisture to be 0.318 m3m−3 at the surface and 0.293 m3m−3 at 25 cm depth.

In contrast, site B showed 0.306 m3m−3 at the surface, and 0.212 m3m−3 at 25 cm

depth. This near-constant moisture with depth on the valley floor and significant

decrease on the slope also appears in the WaSiM data.

Given ECMWF data for the 9 km resolution grid, and WaSiM data for the 350

m and 150 m resolution grids, the question remains as to what the best values are

at the intermediate resolutions of 3 km and 1 km. De Wekker et al. (2004) set

the soil moisture to be constant on their coarser grids and found that the specific

value did not significantly affect the results. Our sensitivity studies in Section 8.6,

however, do show that soil moisture is a parameter to which these simulations are

very sensitive, particularly at the 1 km grid level. We therefore incorporated a semi-

empirical three-level soil moisture initialization for the 1 km grid, used in the MOISLU

simulations. At altitudes above 2200 m where the soil type rock dominates, the

soil moisture was set to 0. Between 2200m and 500m it was set to 0.18 m3m−3,

and below 500m to 0.28 m3m−3. The same values were used at the surface and

deep soil levels. These were selected as intermediate values between the WaSiM

deep and surface layer values, and can be seen as a compromise between the WaSiM

and ECMWF data. In addition to using interpolated ECMWF and three-level soil

moisture initializations, we investigated the use of extrapolated WaSiM data outside
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Surface (0.01 m) Deep (1.0 m)
Valley floor Slopes

ECMWF 0.35 0.37 0.37
WaSiM 0.32 0.25 0.08-0.12
3-level same as deep 0.28 0.18

Table 8.5: Typical soil moisture values (m3m−3) for each dataset in the surface and
deep layers. All have close to zero soil moisture at the rocky outcroppings. The
3-level data are constant in each elevation range.

the Riviera catchment area. The three choices for soil moisture initialization for the

1 km grid are summarized in Table 8.5 and are discussed further in Section 8.6.1.

8.3.6 Radiation model

In steep valleys, “topographic shading” from shadows cast by neighboring topography

can be important. ARPS normally only includes the effect of surface inclination when

calculating incoming solar radiation. We denote this “self-shading”. For example,

during sunrise, the west-facing slope in the Riviera Valley is correctly characterized

as in the shade, because the surface is inclined away from the sun. The valley floor,

however, would not be shown as shaded in the simulation because of its horizontal

slope. Self-shading accounts for much of the required modification to the incoming

radiation in complex terrain; however, the valley floor is in reality also shaded from

solar heating by the adjacent mountains during sunrise.

Colette et al. (2003) performed idealized simulations of steep valleys and found

that the inclusion of topographic shading could delay inversion layer breakup during

the morning by approximately half an hour. The field study of Matzinger et al.

(2003) emphasized the importance of the topographic shade in the Riviera Valley,

where local sunrise is delayed with significant effects on the net radiation balance. To

improve the treatment of radiation in our simulations of a real mountain valley, we

have therefore included the topographic shading method of Colette et al. (2003). Its

effect is evaluated in Section 8.6.4. This subroutine is included in the latest version

of ARPS. The complete treatment of short- and long-wave radiation is described in

Xue et al. (1995, 2000).
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8.3.7 Turbulence, computational mixing, and wall models

The standard closure models in ARPS include 1.5-order TKE (Deardorff, 1980; Mo-

eng, 1984) and static Smagorinsky-Lilly models (Smagorinsky, 1963; Lilly, 1962). The

TKE-1.5 model solves an extra equation for the turbulent kinetic energy to determine

the velocity scale for use in an LES-type eddy-viscosity formulation. The model can

be used for LES as long as the chosen length scale is proportional to the filter width,

as it is in ARPS (Deardorff, 1980; Moeng, 1984). The TKE approach is especially

useful when a large fraction of the velocity scales is contained in the subfilter scales,

as for coarse resolution grids (Pope, 2000, Chapter 13). At very coarse resolution,

options are available for boundary layer parameterizations in the TKE-1.5 scheme,

but then ARPS would no longer be operating in LES mode, so these options are not

used here.

We have used the TKE-1.5 closure in most of the simulations, but the new

subfilter-scale (SFS) turbulence closure methods of Chapters 6 and 7 have also been

applied at the finer resolution grids (where the grid aspect ratio is more suitable

for LES). The new approach uses reconstruction modeling for the resolved subfilter

scales (RSFS) and a dynamic eddy-viscosity model for the subgrid scales (SGS), and

is called the dynamic reconstruction model (DRM). Simulations of neutral boundary

layer flow using DRM over flat terrain were able to accurately represent the expected

logarithmic layer near the wall, unlike standard eddy-viscosity models (Chapter 6).

Applications to flow over Askervein Hill were also successful (Chapter 7). In the DRM

approach for the Riviera Valley (MOISLU-DRM), the Smagorinsky model replaces

the dynamic contribution in the lowest six levels near the wall to prevent instabilities,

as described in Chapter 7. This is denoted DRM-SMAG. The DRM approach also

includes an enhanced near-wall stress model to account for the stress induced by the

poor grid-aspect ratio, filtering near the surface, and subgrid roughness. The near-

wall stress model is applied over a height of 2∆x and with a proportionality factor of

0.5. The vertical extent may be too large (given ∆x = 350 m); the near-wall static

Smagorinsky modification is used over about 400 m. Further investigation is needed

to determine the appropriate settings for flow over such complex terrain. The DRM

was also applied to the transport equation for potential temperature (see Appendix

B) but not for moisture variables.
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Finally, fourth-order computational mixing is used to damp high-frequency mo-

tions that can build up due to nonlinear interactions; this can be considered a type of

hyper-viscosity. ARPS also includes a divergence damping term to control acoustic

noise. The impact of both of these damping terms has been investigated and the

coefficients set to give the minimum amount of mixing required for stability. For ex-

ample, increasing the fourth-order mixing coefficient by a factor of ten results in very

small differences; the potential temperature profiles are slightly smoothed near the

wall only during the night when the stratification is stable. Decreasing the coefficient

by a factor of ten makes the simulation unstable.

8.4 Results and comparison to field data

Detailed results comparing the REF and MOISLU simulations and observation data

for August 25, 1999 are given in this section. All results are from the 350 m resolution

grid unless otherwise noted.

8.4.1 Mean wind patterns

Typical thermally-driven valley wind patterns include the onset of up-slope winds

on the valley walls in the morning, and up-valley winds developing during the day.

In the evening, the winds transition to down-slope and down-valley winds. Slope

winds are generated by differential heating of air near the surface along the slopes

and air in the middle of the valley. A pressure gradient results, which during the day

drives the lighter, warmer air up the slope, and at night drives the heavier, cooler air

down the slope. The mechanism for along-valley winds is not as simply explained,

but can in part be described by the “topographic amplification factor” or the effect

of valley geometry on the energy budget (Steinacker, 1984; McKee & O’Neal, 1989)

and subsidence heating of the valley core (Rampanelli et al., 2004). A comprehensive

discussion of valley wind mechanisms is given by Whiteman (2000).

The winds in the Riviera exhibit some aspects of the typical valley patterns. Figure

8.6 shows the evolution of surface wind speed and direction on August 25, 1999 at

Bosco di Sotto (site A1, see Table 8.6 and Fig. 8.3) near the center of the simulation

domains. Surface station and radiosondes observations were collected at this location
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Figure 8.6: Surface data time series comparisons at Bosco di Sotto (site A1, valley
floor) for (a) wind speed and (b) wind direction. • Observations at 28 m agl;
◦ MOISLU; × REF
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Site Name Location Elev. asl Meas. hgt. agl
A1 Bosco di Sotto Valley floor (46.265 N, 9.012 E) 250 m 15.9, 28 m
B Rored Eastern slope (46.263 N, 9.031 E) 760 m 22, 28 m
C Pian Perdascio Western slope (46.238 N, 9.005 E) 340 m 5 m
E1 Roasco Eastern slope (46.267 N, 9.037 E) 1060 m 2,12.7 m
E2 Monte Nuovo Eastern slope (46.271 N, 9.036 E) 1030 m 16.8,22.7 m

Table 8.6: Surface station locations, shown in Fig. 8.3.
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Figure 8.7: Surface potential temperature time series at Bosco di Sotto (site A1).
• Observations at 28 m agl; ◦ MOISLU; × REF

during the field campaign. The observations are compared to the REF and MOISLU

results. During the first 6-7 hours on August 25, 1999, the dominant winds were

down-valley (about 330◦). Between 0600 and 0800 UTC (CET local daylight savings

time = UTC + 2 hours), winds shift to up-valley (about 150◦). Local sunrise is at

approximately 0700 UTC at the valley floor, but is earlier on the east-facing slopes

and in the Magadino Valley (see Fig. 8.3). Sunset is at approximately 1600 UTC,

and the winds shift to down-valley starting at about 1800 UTC. The surface winds

are generally weak at night and become stronger with the onset of the up-valley flow

during the day.

The MOISLU predictions of the wind speed in Fig. 8.6 show that the onset of the

up-valley winds is about 1 to 2 hours later than observed at 28 m agl at Bosco di
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Sotto. This is significantly better than the REF simulations, where the delay in up-

valley winds is 3-4 hours. The wind direction fluctuates a lot when the wind speed is

weak, making comparisons with LES results difficult. Nevertheless, the surface wind

direction and speed are quite well reproduced by the MOISLU results. The ARPS

data are from the lowest model level, which for the horizontal winds and temperature

is at ∆zmin/2 (see Table 8.2). Comparison is usually made to the closest observation

level, but there often appear to be surface layer effects, due to the plant canopy, that

are not captured in the model. Thus, comparisons to the higher measurement level are

often better. The results of De Wekker et al. (2004) showed a 2-hour delay in the onset

of the up-valley winds and did not to capture the evening transition to down-valley

winds. The most likely reason for the delayed transitions in the ARPS simulations is

poor representation of surface soil conditions. Soil moisture and temperature control

the heating and cooling of the surface, thus controlling the strength of along-valley

and slope winds. Sensitivity tests in Section 8.6.1 confirm that changes in the soil

moisture can significantly change the onset of valley wind transitions. Sensitivity to

the soil temperature initialization was not as large, and was not investigated further.

Figure 8.7 shows the evolution of the surface potential temperature at the same

measurement location. Again we see significant improvement in the results from the

MOISLU simulations compared to the REF results, particularly during the morning

and evening hours.

The surface station observations at the valley floor provide a simple reference for

evaluating the simulation results. However, Grell et al. (2000) advise that simulation

results should be compared to several sites because the complex topography can

lead to different wind transitions at different locations. Figures 8.8 and 8.9 show

observed and simulated winds at surface stations at Pian Perdascio (site C, east-

facing slope) and Monte Nuovo (site E2, west-facing slope) (see Fig. 8.3). These

sites show quite good agreement for the MOISLU simulations compared to the REF

results, particularly for the wind speed. Comparisons along the slopes are often

difficult because of the effect of the plant canopy, and can be very sensitive to the

exact location chosen; moving 100 m to the right or left can change the elevation by

almost 100 m.

A more quantitative comparison can be obtained by examining the magnitude of
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Figure 8.8: Surface data time series comparisons at Pian Perdascio (site C, on western
slope) for (a) wind speed and (b) wind direction. • Observations at 5 m agl; ◦
MOISLU; × REF
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Figure 8.9: Surface data time series comparisons at Monte Nuovo (site E2, on eastern
slope) for (a) wind speed and (b) wind direction. • Observations at 22.7 m agl;
◦ MOISLU; × REF
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differences between the observed and simulated results. Table 8.7 shows the root-

mean-square errors (rmse) and mean errors (bias) for wind speed and direction and

potential temperature at surface station A1, as well as a composite of the errors at

three sites on the eastern slope (sites B, E1 and E2). The bias provides an indication

of the average direction of deviation of the modeled from the observed data, whereas

the rmse provides an estimate of the magnitude of the error. They are defined:

bias =
1

M

M∑

j=1

1

N

N∑

i=1

(Ai,j −Bi,j) (8.1)

rmse =

√√√√√ 1

M

M∑

j=1

1

N

N∑

i=1

(Ai,j −Bi,j)2 (8.2)

where M is the number of time steps, N is the number of grid points, and Ai,j

and Bi,j are the datasets being compared. Overall, the errors between simulated

(MOISLU) and observed fields in the Riviera Valley are quite small (e.g. less than 1 K

for potential temperature), especially when compared to the results of other typical

simulations. Zängl et al. (2004) found surface potential temperature rmse values

ranging from 2.3 to 4.4 K and bias values from -0.2 to -4.0 K for 1 km resolution

simulations in the Rhine Valley. Their rmse and bias values were for a nine-hour

period, whereas ours are for 24 hours and for 350 m resolution. The MOISLU results

significantly reduce all the errors except the wind direction bias, where the REF

results exhibited more fluctuations and hence a lower overall bias.

8.4.2 Boundary layer evolution

The vertical structure of the atmosphere, as measured by radiosondes, reflects impor-

tant features of the flow not captured by surface station observations. Figures 8.10a

and 8.10b compare the REF and MOISLU simulated potential temperature, wind

speed, wind direction, and specific humidity, with radiosonde data obtained at Bosco

di Sotto (site A1). The lowest 6 km above the ground are shown. The temperature

structure of the atmosphere early in the morning (0739 UTC) is characterized by a

stable layer below 1.5 km asl, a very stable layer between 1.5 and 2.2 km asl, and

a mixed or slightly stable layer above, extending to about 4.5 km asl. The strong
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Site A1 Sites B, E1, E2
REF MOISLU REF MOISLU

θ rmse (K) 3.20 0.69 1.12 0.85
θ bias (K) -3.04 -0.41 -0.53 0.04
U rmse (m/s) 1.47 1.28 1.13 1.20
U bias (m/s) -0.53 0.57 -0.35 0.11
φ rmse (deg) 86.42 63.21 71.13 67.28
φ bias (deg) -1.50 -11.05 -1.97 -9.01

Table 8.7: Root-mean-square errors and mean errors (bias) for potential temperature
(θ), wind speed (U), and wind direction (φ), for simulations compared to observations
at Bosco di Sotto (site A1), using average of 15.9 and 28 m values, and at three sites
on the eastern slope (sites B, E1 and E2), using data from a variety of measurement
heights.

capping inversion at about 2 km asl is also present in the synoptic flow and is likely

due to large-scale subsidence; for example, soundings in Milan, well outside of the

Alps, also exhibit this inversion. Typical valley inversion layer breakup theory pre-

dicts that the mixed layer will continue to grow while there is surface heating, as on

such a “convective” day Whiteman (2000), and will eventually extend over the entire

valley depth. The radiosonde observations, however, show only growth to a 500-800 m

mixed layer thickness near the ground at 1208 and 1508 UTC. The rest of the valley

atmosphere remains stable. That the evolution of the vertical structure is atypical

can be seen further by the sounding at 1508 UTC, where the surface temperature has

increased by another degree, but the mixed layer depth has decreased. This indicates

the presence of other processes acting to inhibit mixed layer growth, as also discussed

by Weigel & Rotach (2004).

Figure 8.11 shows the observed potential temperature soundings together, making

it clear how the atmosphere warms overall, but remains stable throughout the day

above 700 m asl. The profiles exhibit a pattern similar to “Pattern 2” inversion

layer destruction described by Whiteman (1982), but they do not fit the description

completely. Pattern 2 includes convective layer growth at the surface, with subsidence

warming from above which compensates for the air removed by up-slope winds. In

the Riviera Valley, however, the potential temperature profiles change slope near

the top of the inversion instead of simply sinking downward. (See page 110 of (De

Wekker, 2002) for a sketch of the potential temperature evolution.) Growth from the
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Figure 8.10a: 0739, 0915, and 1208 UTC radiosonde observations compared to simula-
tions at Bosco di Sotto (site A1) of potential temperature, wind speed, wind direction,
and specific humidity on 25 August, 1999. Observations; MOISLU;
REF
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Figure 8.10b: 1508, 1800, and 2118 UTC.
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Figure 8.11: Potential temperature radiosonde observations at Bosco di Sotto.

surface is also inhibited, as previously discussed. Thus, in the Riviera the destruction

of the stable layer is not complete. One reason for the persistence of the stable

layer throughout the day may be the presence of a strong secondary circulation and

warming due to subsidence in the valley; this is particularly evident on August 21

and 22, and is discussed further in Weigel & Rotach (2004) and in the companion

paper to this chapter (Weigel et al., 2004b).

The observed wind profiles corroborate the measurements at the surface stations

which show the increased strength of the winds during the up-valley wind period in

the afternoon. Above the capping inversion, the wind speeds increase significantly

and are consistently in the down-valley or north-northwest direction. These strong

winds move the sounding balloon away from its starting (x, y) location. The balloon

rises at about 1 m/s and thus provide a time evolving profile, capturing fluctuations

in the atmosphere as it rises; observation errors in soundings also increase with height.

The simulation data profiles represent the hour or half hour closest to the balloon

ascent time, interpolated horizontally to the balloon launch location.

The agreement of the MOISLU results with the observed profiles in Figs. 8.10a

and 8.10b is excellent, much better than the REF results which do poorly near the

ground. In particular, the REF simulations do not reproduce the mixed layer near the



8.5. FLOW STRUCTURE AND TRANSITIONS 213

ground that was observed at 0915 UTC. The wind direction predicted by REF also

fails to exhibit the observed up-valley flow at 0915 and even does not do well at 1208

UTC near the surface. Both simulations fail to match the observed surface warming

during the afternoon, particularly at 1508 UTC. The wind speed profiles are especially

difficult to compare because observed winds depend on fluctuations of the balloon’s

position as it rises. We cannot expect the LES results to provide exactly the same

instantaneous profiles, but rather to represent the “mean” or resolved-scale structure

(Germano, 1996). Another significant discrepancy between the observations and the

simulation results is found at 2118 UTC, when the inversion at 2 km asl sharpens; the

simulations do not have enough resolution to resolve this feature in the temperature

or humidity profiles. Wind data at 2118 UTC are missing near the surface, but the

simulations indicate that the winds have reversed to down-valley, in agreement with

the surface station time series observations. The results of De Wekker et al. (2004)

showed good surface temperature agreement at 0915, 1208 and 1508 UTC, but further

above the ground the modeled profiles were too smooth and did not compare as well

with observations as our MOISLU results. Specific humidity is also better reproduced

in our simulations. It is difficult to compare wind predictions as De Wekker et al.

(2004) only presented vector profiles.

Table 8.8 shows the rmse and bias for the MOISLU simulations for each profile,

including data up to about 6 km asl; the errors are quite small (e.g. ∼ 2 m/s for wind

speed) and confirm the good agreement between simulations and observations seen

visually. Gohm et al. (2004), for example, found wind speed rmse errors from vertical

profiles of about 5 m/s and mean errors of ± 1.5 m/s for simulations in the Alps at

800 m resolution. Table 8.9 compares the overall rmse and bias for all sounding times

for the MOISLU and REF simulations.

8.5 Flow structure and transitions

Given the excellent agreement of the MOISLU simulations with the surface station

and sounding observations at Bosco di Sotto, we proceed to investigate the three-

dimensional structure of the valley atmosphere.
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0001 0600 0739 0915 1208 1508 1800 2118 All
θ rmse (K) 1.17 1.26 0.82 0.66 1.06 0.99 0.56 0.75 0.94
θ bias (K) 0.21 0.48 -0.38 -0.34 -0.80 -0.77 0.00 -0.15 -0.22
U rmse (m/s) 1.94 NA 2.35 1.99 1.75 1.81 2.77 2.29 2.04
U bias (m/s) -0.05 NA 0.93 -0.38 -0.41 -0.09 -0.90 0.20 -0.12
φ rmse (deg) 38.00 NA 65.88 31.74 24.26 61.29 54.09 23.96 45.73
φ bias (deg) -16.33 NA -7.10 -11.30 -4.27 -8.71 16.13 -10.36 -5.99
q rmse (g/kg) 1.02 1.16 1.15 0.93 1.24 1.21 1.33 1.26 1.17
q bias (g/kg) 0.28 -0.35 -0.15 -0.79 0.04 0.08 -0.06 -0.95 -0.24

Table 8.8: Root-mean-square errors and mean errors (bias) for potential temperature
(θ), wind speed (U), wind direction (φ), and specific humidity (q), for each radiosonde
launch for MOISLU. Wind observation data were not available (NA) for 0600 UTC.
ARPS data were taken from output at nearest half hour.

REF MOISLU
θ rmse (K) 1.43 0.94
θ bias (K) -0.73 -0.22
U rmse (m/s) 2.29 2.04
U bias (m/s) -0.35 -0.12
φ rmse (deg) 55.47 45.73
φ bias (deg) 3.96 -5.99
q rmse (g/kg) 1.45 1.17
q bias (g/kg) -0.75 -0.24

Table 8.9: Root-mean-square errors and mean errors (bias) for potential temperature
(θ), wind speed (U), wind direction (φ), and specific humidity (q), for all radiosonde
launches for MOISLU and REF simulations.

8.5.1 Along-valley wind and potential temperature structure

Figures 8.12a-8.12d show the valley winds in a planar cross-section at 500 m asl. The

data are from the 150 m grid which covered only the southern half of the valley. At

0600 UTC and 0800 UTC, valley winds are primarily down-valley. Vertical velocities

are near zero throughout most of the domain, but a narrow up-slope flow region is

clearly evident along the east-facing slopes at 0800 UTC. By 1100 UTC, the flow has

shifted to up-valley and is strongest on the east side of the valley. This is due to the

curvature of the flow entering from the Magadino Valley to the south. Up-slope winds

are evident along both walls of the valley at this time. The up-valley jet generates

waves further north, as seen from the sign changes in vertical velocity. This structure

is also visible in the along-valley vertical cross section shown later in Fig. 8.13b. As
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the up-valley flow strengthens, these waves disappear (by 1300 UTC). One vertical

velocity feature persists from 1100 to 1600 UTC: at the valley entrance, air sinks on

the western side of the valley and rises on the eastern side; this is likely orographically

induced as the air is forced over the slopes as it curves into the Riviera. Further up the

valley, where the up-valley jet is on the east side, there is a region of strong circulation

with sinking air on the east side of the valley evident from 1100 to 1600 UTC. Even

further north, there is evidence of a classical valley circulation (1300 UTC), with air

rising along both slopes, and sinking in the middle of the valley. By late afternoon

(1600 UTC), the up-slope winds persist only on the sunlit west-facing slopes. The

transition to down-valley flow occurs gradually. Large horizontal eddies develop at

1900 UTC, where flow on the east side of the valley is up-valley, and flow on the

opposite side is down-valley. By 2100 UTC the down-valley flow is accompanied by

shallow down-slope winds on both sides of the valley.

Figures 8.13a-8.13d show potential temperature contours on a vertical plane along

the valley axis, at the middle of the valley, for the same times as Figs. 8.12a-8.12d.

The slice through the valley axis is not exactly centered along the valley floor because

the valley is not perfectly straight (see Fig. 8.3). Wind vectors, projected on the

plane, are included to show the general valley flow at each time. The north end

of the valley is to the left, so that down-valley winds go from left to right. Early

in the morning (0600 and 0800 UTC), the stratification is quite uniform along the

length of the valley. By 0800 UTC, the northern end of the valley has warmed

slightly. At 1100 and 1300 UTC, we see what appears to be a mass of potentially

cooler air propagating up the valley axis. High above the valley floor, the synoptic

winds persist in the down-valley direction. The internal wave structures discussed

earlier (Fig. 8.12b) are visible. While the cooler air is advected up the valley, the

valley atmosphere also warms considerably through the afternoon (1600 UTC) due

to other processes (see below). At a given elevation (within the valley atmosphere),

the potential temperature is warmer to the north. Between 1900 and 2100 UTC, the

valley winds shift to down-valley, the valley cools, and the stratification again becomes

more uniform along the valley axis. Detailed analysis of the valley heat budget derived

from the ARPS results is given by Weigel et al. (2004b); the budgets extracted from

observation data are given by Weigel & Rotach (2004). Both analyses delineate the

delicate balance that exists between the cooling effects of up-valley advection and the
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heating due to subsidence, i.e. vertical advection. These processes combine to give a

net heating effect during the day, as seen in Figs. 8.13a-8.13d.
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Figure 8.12a: 0600 UTC and 0800 UTC. Along-valley winds (vectors) and vertical winds (m/s, shaded: blue (down), red
(up)) from the 150 m grid, at 500 m asl. Vectors are not uniformly spaced due to interpolation, and not all vectors shown.
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Figure 8.13a: 0600 UTC and 0800 UTC. Valley winds (vectors) and potential temperature (K, shaded) in a vertical plane
(left side is north, right side is south) along the valley axis. Plot axes are stretched so the valley is not to scale. Vectors
not uniformly spaced, and not all vectors shown.
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8.5.2 Cross-valley wind structure

Figures 8.14a-8.14g show vertical cross sections perpendicular to the valley axis (at

29.5◦). This cross section is placed slightly south of site A1 (see Fig. 8.3) and the

available flight data to capture the secondary circulation better. Comparisons to

flight data at the cross-section through A1 are given later in Fig. 8.15. Contours of

along-valley winds (rotated 29.5◦ to be aligned with the valley) are shown together

with vectors of the cross-valley winds (perpendicular to the valley axis). At 0800

UTC, down-valley winds dominate the core valley flow. Upslope winds can be seen

only on the sunlit east-facing slope, as in Fig. 8.12a. By 1100 UTC, both valley

walls are well-lit, producing significant up-slope winds on both sides. The core valley

wind has also shifted to up-valley, and a strong cross-valley circulation is observed.

The winds on the east slope are down-slope above the surface, a consequence of the

clockwise secondary circulation. This circulation is generated by a pressure gradient

formed when the up-valley core flow is shifted to the right as it enters from the

Magadino Valley (see Fig. 8.12b). The secondary circulation is also evident in the

observation data near the southern valley entrance (Weigel & Rotach, 2004). Further

up the valley, the circulation diminishes (see Fig. 8.12b-8.12c), indicating that it

is not due to a lid-driven cavity effect (induced by shear at the mountain tops), but

rather by the incoming up-valley jet. The west-facing slope continues to receive direct

sunlight, so up-slope winds persist as late as 1600 UTC, while weak down-slope winds

begin along the east-facing slope. After 1600 UTC, the up-valley jet, and hence the

secondary circulations weaken. Later in the evening at 2100 UTC, both sides have

weak down-slope winds and the valley flow has shifted to the down-valley direction

as well.

The simulations also agree quite well with aircraft observation data. Figure 8.15

compares the aircraft data and the simulation results (from a cross section passing

through site A1) at approximately 1300 UTC. Both show the presence of a shifted

up-valley jet of similar structure and magnitude.
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(a)

(b)

Figure 8.15: Along-valley winds (shaded: blue (down-valley), red (up-valley)) from
(a) aircraft measurements and (b) simulations. Courtesy of Andreas Weigel.
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8.5.3 Transition of valley winds during sunrise

Figures 8.16a-8.16d show the MOISLU simulated surface winds at four times during

the three hours following sunrise. The grey shading indicates the intensity of incoming

solar radiation at the surface. Black indicates that the area is receiving no sunlight,

and white indicates bright sunshine. At 0630 UTC, the east side of the valley and the

valley floor are in darkness. There are weak surface winds along the valley floor, and

weak down-slope winds on shaded slopes. By 0730 UTC, up-slope winds have begun

on the east-facing slope, and they continue to strengthen. By 0830 UTC, winds on

the east slope have also begun to shift to up-slope, and the transition to up-valley

flow has been completed over the entire valley axis. Approximately three hours after

sunrise (0930 UTC), we see significant up-slope winds on both slopes, and a strong

up-valley component along the whole valley floor as well. The transition in wind

direction clearly occurs first along the slopes and then along the valley floor as the

core of the valley wind shifts to up-valley. Note that the same wind sequence occurs

in the Calanca Valley (roughly parallel to the Riviera Valley on the east).

Figures 8.17a-8.17d show the transition of valley winds during sunrise at a higher

level, 1000 m asl. Also shown are contours of the potential temperature at this

elevation. Over the two-hour period from 0700 to 0900 UTC, the valley winds shift

from down-valley to up-valley. At this elevation the up-valley winds are stronger on

the west side of the valley, perhaps because there is less curvature at the south end of

the valley at this elevation than at 500 m, where Fig. 8.12b showed the jet is shifted

to the right. It is interesting to observe that the northern reaches of the Riviera

Valley (the Leventina and Blenio Valleys) are warmer than the main Riviera Valley,

as also seen in Fig. 8.13b. This may be due to the narrower valley cross-section further

north. The Verzasca Valley (parallel and to the west) is also warmer, particularly

along its slopes. The temperature gradient along the valley axis, and the air at the

same elevation is driven from cooler to warmer regions. This is consistent with the

topographic amplification concept of Steinacker (1984).
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Figure 8.16a: Surface winds (vectors) and incoming solar radiation (shaded: black
(no sunlight, 0 W/m2), white (bright sun, > 400 W/m2)). 0630 UTC.
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Figure 8.16b: 0730 UTC
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Figure 8.16c: 0830 UTC
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Figure 8.16d: 0930 UTC
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Figure 8.17a: 0700 UTC. Valley winds (vectors) and potential temperature (shaded,
K) at 1000 m asl. Vectors are not uniformly spaced due to interpolation, and not all
vectors are shown.



240 CHAPTER 8. SIMULATIONS OF FLOW IN A STEEP ALPINE VALLEY

Figure 8.17b: 0800 UTC
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Figure 8.17c: 0830 UTC
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Figure 8.17d: 0900 UTC
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8.5.4 Turbulence structure

Before looking at the vertical structure of the turbulent contributions to the momen-

tum equation, we can compare the surface heat fluxes produced by ARPS with the

observations. Figure 8.18 shows the time series evolution of the sensible heat flux at

surface stations A1 (valley floor) and B (eastern slope). The heat flux is the kinematic

heat flux defined as wθ. Surface fluxes in ARPS are calculated from similarity the-

ory and provide a boundary condition for the heat flux equation. The model results

compare quite well to the observations, especially given the high spatial variability

observed in the valley. The time series obtained at the five points nearest the sur-

face station are shown. With 350 m grid spacing and steep slopes, large elevation

differences can accompany a change in horizontal position. Station B on the east

slope exhibits more cooling at night than station A1 (0000 to 0700 UTC). Significant

heating occurs during the day at both sites, with ARPS giving higher values at the

valley floor than observed during the latter half of the afternoon. The peak heat

flux is delayed on the east slope relative to the valley floor because the slope does

not receive direct sunlight until later in the morning, and is heated until later in

the afternoon. The peak magnitude is much larger at site B because of the surface

inclination and exposure of the site in the afternoon. Similar time series are obtained

for the momentum fluxes (uw and vw, not shown).

Surface heating generates convective eddies, so the turbulence contribution is

greatest in the afternoon. Figures 8.19-8.20 show vertical cross sections of the re-

solved and SFS stress contributions for uw and vw averaged over 1300 to 1500 UTC.

The velocities have again been rotated to be aligned with the valley axes. The ver-

tical slice is perpendicular to the valley axes at site A1 (see Fig. 8.3). The resolved

stress is computed from < uw >res=< ũw̃ > − < ũ >< w̃ > with the time average

denoted by <>. The plotted SFS stress is simply < τ13 >, and likewise for the vw

stresses. The contribution of the SFS stresses is significant only very near the sur-

face, below about 500 m. There, the SFS stresses are several times larger than the

resolved stresses, as also seen in the profiles in Fig. 8.21. Profiles taken during the

early morning hours showed significantly smaller stresses, as expected.

The SFS stress contributions are not large outside the near-surface layer, perhaps

explaining why using different turbulence models does not have very large effects (see
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Figure 8.18: Time series of surface sensible heat flux at (a) site A1 (valley floor) and
(b) site B (eastern slope). ∗ Observations; Solid lines: MOISLU results from five
nearest points to observation site, with blue being the closest. Note the different
vertical axes.
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Figure 8.19: Vertical cross-sections of (a) resolved uw and (b) SFS τ13 stress (m
2/s2)

perpendicular to valley axis at site A1. Time averaged between 1300 and 1500 UTC
at 300 s intervals.
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Figure 8.20: Vertical cross-sections of (a) resolved vw and (b) SFS τ23 stress (m
2/s2)

perpendicular to valley axis at site A1. Time averaged between 1300 and 1500 UTC
at 300 s intervals.
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Figure 8.21: Vertical profile of resolved, subfilter-scale, and total stress for (a) uw
and (b) vw at the valley floor. Time averaged between 1300 and 1500 UTC at 300 s
intervals.

Section 8.6.5). The atmosphere in the Riviera is stably stratified throughout the day

except very near the surface (see Fig. 8.11), and the TKE-1.5 closure will not produce

SFS turbulence when the flow is stable (as measured by the Richardson number) or

when there is only weak shear in the flow. Likewise, the Smagorinsky model used

by ARPS has a stability criterion that limits the contribution of SFS stresses under

stable stratification.

8.6 Sensitivity tests

The comparisons in Section 8.4 contrasted the improved results from MOISLU with

those from the standard “acceptable” procedure using the standard initial conditions

and surface datasets (REF). We now examine the separate effects of individual pieces

of the MOISLU simulation approach.
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8.6.1 Soil moisture

The improved results from the use of high-resolution WaSiM soil moisture data have

already been shown in Figs. 8.6-8.10b which compare the REF and MOISLU simula-

tions. The REF simulations used ECMWF soil moisture data; the result is that the

up-valley wind transition occurs too late (by 3-4 hours) throughout the entire nesting

set. The MOISLU surface layer soil moisture values are slightly lower (0.33 m3m−3)

than those from ECMWF (0.35 m3m−3). The deep soil values are comparable (0.35

m3m−3) at the valley floor, but the WaSiM data give much lower deep soil values

on the slopes. Banta & Gannon (1995) found that increased soil moisture decreases

the strength of katabatic winds; this is due to slower cooling caused by the increased

thermal conductivity of moist soil and increased downward longwave radiation (be-

cause the air near the surface has higher humidity). Ookouchi et al. (1984) showed

that increased soil moisture decreases up-slope winds because the wetter soil does not

heat as quickly and hence produces smaller horizontal pressure gradients. Accord-

ingly, with wetter soil (REF), the transition to up-valley winds begins later, while

the drier soil (MOISLU) better reproduces the transition. This simple explanation is

complicated, however, by the complexity in the topography of the Riviera Valley and

its tributaries (the Magadino, Mesolcina, Leventina and Blenio Valleys), where the

effect of soil moisture will be different in each valley. For example, strong down-valley

winds from the Mesolcina Valley could block the entrance of up-valley winds from

the Magadino Valley into the Riviera Valley.

That the soil moisture effect is not straightforward is demonstrated by an attempt

to use the WaSiM data at coarse resolutions as well. The WaSiM data cover only the

Ticino and Verzasca river catchment areas, i.e., only the immediate vicinity of the

Riviera. We have, however, applied the WaSiM data over the 1 km grid (MOISLU2

simulations) where data are available. Over the rest of the domain, we use elevation-

dependent values at three levels determined from averages of the WaSiM data (similar

to the MOISLU setup, see Table 8.5). Thus, we extrapolate the values from the

center of the domain, where the WaSiM data are available, to the rest of the Alps

region covered by the 1 km grid. The wind speed and direction from MOISLU and

MOISLU2 in Fig. 8.22 differ significantly, although there is not as much difference in

the temperatures in Fig. 8.23. The greater delay in the onset of the valley winds is
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Figure 8.22: Surface wind direction and speed at Bosco di Sotto (site A1). •
Observations; ◦ MOISLU; × MOISLU2
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Figure 8.23: Surface potential temperature at Bosco di Sotto (site A1). • Obser-
vations; ◦ MOISLU; × MOISLU2
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particularly visible in the wind speed time series for the MOISLU2 simulations and in

the soundings in Fig. 8.24. The wind speed time series also show that the up-valley

winds die out too soon in the evening.

The results from the MOISLU, MOISLU2 and REF comparisons indicate that the

soil moisture outside the fine-grid (350 m) domain is crucial for accurately predicting

the wind transitions. The simulations deteriorate in quality when we assume the large

scale soil moisture distribution (ECMWF) also holds on the 1 km domain (REF).

Likewise, assuming that the local soil moisture distribution (WaSiM) in the Riviera

Valley also holds over the larger 1 km domain (MOISLU2), also yields poorer results

than the three-level soil moisture used for the MOISLU simulations. This points to

the need for high-resolution soil moisture measurements over a broader region (such

as all of the Alps) to provide accurate input to large-eddy simulations.

8.6.2 Land use data

We have introduced 100 m resolution land use data for the 350 m grid level, as de-

scribed previously in Section 8.3.5. To measure the impact of the increased number of

vegetation and soil classes, we performed simulations with interpolated low-resolution

land use data and original vegetation and soil types (results are denoted MOIS) in-

stead of the 100 m data. The MOIS wind direction in Fig. 8.25 shows erratic behavior

during the down- to up-valley transition, and the wind speed indicates that up-valley

winds are delayed an additional half hour relative to the MOISLU results. Figure 8.26

shows differences in the potential temperatures as well; during the morning hours,

the MOIS simulations predict cooler values than observed. Differences in vertical

sounding profiles are quite small except near the surface (not shown). Nevertheless,

the overall results indicate that the high-resolution land use representation brings

improvements.

8.6.3 Grid resolution

High grid resolution is particularly important over complex terrain like the Riviera

Valley, where the terrain features that channel the flow must be well resolved. The

width of the Riviera Valley floor is approximately 2 km. Given that the minimum

well-resolved eddy for LES is 4∆x, a horizontal resolution of 500 m would barely
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Figure 8.25: Surface wind direction and speed at Bosco di Sotto (site A1). •
Observations; ◦ MOISLU; × MOIS
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Figure 8.26: Surface potential temperature at Bosco di Sotto (site A1). • Obser-
vations; ◦ MOISLU; × MOIS

resolve the valley floor. Coarse resolutions also do not represent the terrain elevation

accurately. For example, the elevation of Bosco di Sotto (site A1) is 1123 m, 794 m,

334 m, and 263 m asl on the 9 km, 3 km, 1 km, and 350 m resolution grids, respectively.

This is an enormous height difference that greatly affects the LES representation of

near-surface flow.

Figures 8.27-8.29 show comparisons of the results from 1 km, 350 m, and 150

m horizontal resolutions, using the MOISLU simulation set of nested grids. The 1

km grid in this instance includes the 3-level elevation dependent soil moisture. The

350 m and 150 m grids use WaSiM data, as noted previously. The general trends

in the wind and temperature data are very well captured even at 1 km resolution.

The wind shifts in Fig. 8.27 are particularly well-represented at 1 km, and the finer

nested grids follow. Potential temperature (Fig. 8.28) for the 1 km grid is too high

at the surface; this is likely caused by elevation differences at Bosco di Sotto (334 m

asl on the 1 km grid vs. 263 m asl for the 350 m grid). The 150 m grid shows slightly

high temperatures during the first six hours of the day. This may be due to the fact

that data are plotted at the first grid cell center, which is at 10 m for the 150 m grid

and at 15 m for the 350 m grid. The finer horizontal resolution simulations also have
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finer vertical resolution (see Section 8.3.2) and resolve stratified layers better. Indeed,

Fig. 8.29 shows that the largest differences in potential temperature (at 1800 UTC)

between the different resolutions occur near the surface. Even though the 350 m and

150 m resolution results do not match the data perfectly, they seem to capture the

near surface inversion that was likely the result of down-slope winds.

The differences between the 350 m and 150 m results in Figs. 8.27-8.29 are not

large. This is likely due to the lateral boundary forcing and the limited domain sizes.

The 150 m grid is strongly forced by the 350 m resolution results. The increased

resolution is, however, clearly necessary for an accurate representation of this complex

flow. The general results (e.g. wind transitions) are determined at the 1 km level, so

it is important to have good soil moisture values at this resolution (see Section 8.6.1

and Weigel et al. (2004a)). Finer resolution allows a larger range of flow structures to

be resolved, thereby better representing near-surface features (e.g. stratification), and

placing less energy in the SFS turbulence models. At the same time, the unsatisfactory

REF results (using interpolated coarse grid surface data) show that high resolution

surface data is necessary in addition to fine grid resolution.

8.6.4 Topographic shading

Figure 8.30 shows the surface radiation balance through the day from the 350 m

resolution ARPS results corresponding to measurements at surface station A1. The

model slightly overpredicts incoming shortwave radiation. The peak of the curve

is highly sensitive to location and local surface inclination and could be adjusted

to match the observations better by improving the spatial interpolation from the

simulation results. The dip at 1300 UTC was due to a brief period of clouds. The net

radiation is generally underpredicted day and night, which implies that the longwave

radiation balance is at fault: either the incoming radiation is too low or the outgoing

radiation is too large. Zhong & Fast (2003) found that night-time net radiation was

also too low in their simulations of Salt Lake Valley, and suggested that the incoming

longwave radiation was underestimated because the surface temperatures were lower

than observed (giving smaller outgoing longwave radiation). Our results show good

temperature comparisons in the Riviera Valley, so it is difficult to conclude which

component is responsible. The outgoing longwave radiation is often thought to be
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Figure 8.27: Surface wind direction and speed at Bosco di Sotto (site A1). •
Observations; 2 1 km; × 350 m; ◦ 150 m
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Figure 8.28: Surface potential temperature at Bosco di Sotto (site A1). • Obser-
vations; 2 1 km; × 350 m; ◦ 150 m
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Figure 8.29: Close-up of potential temperature soundings at 1800 UTC. Ob-
servations; 1 km; 350 m; 150 m. The data at 1 km do not extend
below 334 m.
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Figure 8.30: Radiation budget components compared to observations.

underestimated in valleys because the radiation models are one-dimensional (in the

vertical); the models do not account for the incoming longwave emissions from the

valley walls at night and therefore allow too much cooling.

Zhong & Fast (2003) also suggest that the absence of topographic shading in

their simulations caused discrepancies. Figure 8.31 shows the incoming shortwave

radiation with and without topographic shading. The incoming shortwave radiation is

significantly reduced around sunrise and sunset when topographic shading is included,

and therefore compares better with the measurements. The topographic shading

model does not affect the longwave radiation balance at night.

Figure 8.32 shows the spatial variation of differences in incoming shortwave ra-

diation at 0600 UTC when topographic shading is included. The east-facing slopes

are shaded while the sun is low on the horizon, resulting in nearly 300 W/m2 less

insolation. The differences are largest at sunrise and sunset, as seen in Fig. 8.31.

A series of simulations was performed without topographic shading for the entire

set of simulations (MOISLU-NS). The differences were insignificant at the coarser

resolutions, because terrain slopes are smaller. On the 350 m grid, surface tempera-

tures are slightly warmer without shading (∼ 0.5-1.0 K) during sunrise and sunset,

as expected. The influence of topographic shading in the radiosonde comparisons



8.6. SENSITIVITY TESTS 257

0 5 10 15 20
−200

−100

0

100

200

300

400

500

600

700

800

UTC

(W
/m

2 )

No shade
With shade
Observed

Figure 8.31: Incoming solar radiation, with and without topographic shading.
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Figure 8.33: Absolute difference for surface station time series at site A1 for MOISLU
and MOISLU-NS simulations, for (a) potential temperature, (b) wind speed, and (c)
wind direction.

is quite small. Figure 8.33 shows a time series of the absolute value of differences

at surface station A1 (Bosco di Sotto) for the MOISLU and MOISLU-NS results.

Figure 8.34 shows the overall root-mean-square differences for the two simulations

for sounding profiles at site A1 as a function of time. The effect of the topographic

shading is concentrated near the surface, so the rms differences are not as large when

averaged over the lowest 6 km. Nevertheless, it is clear that the largest changes from

topographic shading occur during sunrise and sunset.

Figure 8.35 shows the difference in surface winds between the MOISLU and

MOISLU-NS simulations at 0700 UTC. The MOISLU-NS simulations show increased

up-slope winds along the east-facing slope of the Riviera as expected; however, dif-

ferences are only on the order of 0.1 m/s, occasionally up to 0.5 m/s. The differences

on the west-facing slope do not form a consistent pattern. Larger differences from to-

pographic shading were observed in the idealized simulations of Colette et al. (2003),

where along-valley winds were absent. Another reason why the impact of topographic

shading is weaker here may be that the valley winds originate in the Magadino and



8.6. SENSITIVITY TESTS 259

0 5 10 15 20
0

0.2

0.4 (a)

θ 
(K

)
0 5 10 15 20

0

0.5

1
(b)

U
 (

m
/s

)

0 5 10 15 20
0

20
40
60
80

(c)

φ 
(d

eg
re

es
)

0 5 10 15 20
0

0.5

1
(d)

Time (UTC)

q 
(g

/k
g)

Figure 8.34: Root-mean-square difference for sounding profiles at site A1 for MOISLU
and MOISLU-NS simulations as a function of time, for (a) potential temperature, (b)
wind speed, and (c) wind direction.

Leventina Valleys (to the south and north of the Riviera, respectively). These val-

leys are oriented more nearly east-west and are thus less affected by shading in the

morning. While the differences between the MOISLU and MOISLU-NS simulations

are small, the improvement in the radiation curves in Fig. 8.31 is significant. The

computational cost of the subroutine is negligible (Colette et al., 2003), so we include

the topographic shading in our simulations.

8.6.5 Turbulence closure

Figures 8.36-8.38 compare results from the MOISLU simulations with and without

a turbulence closure model. The “no model” simulations (MOISLU-NOTURB) do

not perform as well. The surface wind and potential temperature predictions in

Figs. 8.36-8.37 have some significant differences; for example the surface winds show

more oscillations, as expected for a simulation with less dissipation. The potential

temperature profiles at 1208 UTC in Fig. 8.38, however, are not very different except

very near the surface where the MOISLU runs produce slightly more mixing. The

small difference is at first surprising; although 350 m is considered high resolution for
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Figure 8.35: Difference in vertical velocity (shaded, m/s) and horizontal velocity
(vectors, m/s) with (MOISLU) and without (MOISLU-NS) shading for the 350 m grid
at 0700 UTC in the central region of the valley (unshaded minus shaded). Colorbar is
truncated at ± 0.2. Vector scale is shown in upper left corner. Topography contours
(lines) are shown at 250 m intervals.

the atmosphere, it still leaves much of the flow unresolved. All of the simulations still

include the fourth-order computational mixing, which acts like a hyper-viscosity term

and appears to dominate the effects of the turbulence model at 350 m resolution. The

numerical errors from finite-difference schemes also contribute to the dissipation of

energy from large to small scales.

Given similar coefficients for the computational mixing, we expect that at finer res-

olution the relative importance of the turbulence term will increase. This follows from

the relative scaling of the mixing terms: the computational mixing is fourth-order in

the grid spacing, while the turbulence terms are second-order in the filter width (see

Chapter 3). Our current 150 m resolution simulations, however, are strongly forced

by the 350 m results, which limits the development of finer scales. The 150 m results

are not significantly different from the 350 m grid (see e.g. Fig. 8.27).

The SFS stress contribution is limited to the lowest 500 m, as shown in Figs. 8.19-

8.21, so the effect on the flow is also limited. Figures 8.39-8.40 compare the results
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Figure 8.36: Surface wind time series comparisons at Bosco di Sotto (site A1) for
(a) wind speed and (b) wind direction. • Observations; ◦ MOISLU; ×
MOISLU-NOTURB



262 CHAPTER 8. SIMULATIONS OF FLOW IN A STEEP ALPINE VALLEY

0 5 10 15 20
286

288

290

292

294

296

298

300

Time (UTC)

θ 
(K

)

Figure 8.37: Surface potential temperature time series. • Observations; ◦
MOISLU; × MOISLU-NOTURB
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Figure 8.38: Potential temperature soundings at 1208 UTC. Observations;
MOISLU; MOISLU-NOTURB
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using the DRM models with the base case TKE-1.5 closure (used in the MOISLU

simulations). Specifically, we use the dynamic Wong-Lilly closure (DWL-SMAG, with

the near-wall static Smagorinsky modification and the near-wall stress model) and the

model with the lowest level of reconstruction (DRM-ADM0-SMAG) (see Chapters 6

and 7). The differences in the TKE-1.5 and DRM simulations are not large. Figure

8.41 shows one of the largest differences observed in the vertical potential temperature

profiles during the day.

Figures 8.42-8.44 show vertical cross-sections and profiles of time-averaged re-

solved and SFS stresses in the uw and vw planes from DRM-ADM0-SMAG results.

Compared to Figs. 8.19-8.21, the DRM-ADM0-SMAG results give a significantly

larger contribution from the SFS terms. This is consistent with the findings in Chap-

ters 6 and 7 where the SFS stresses using DRM were larger (than those from an

eddy-viscosity model) due to the RSFS contribution. The distribution of stress is

also different throughout the valley.

Figures 8.45 and 8.46 show diurnal variations of the absolute and root-mean-square

differences for surface station and sounding profiles at A1 (Bosco di Sotto) between

the TKE-1.5 and DRM-ADM0-SMAG results, as done in Figs. 8.33 and 8.34. The

differences at site A1 are largest at night and during along-valley flow transitions, but

the timing is different for different parameters. The largest wind speed difference, for

example, occurs in the late afternoon to evening, while the largest specific humidity

difference occurs earlier.

The relative insensitivity of the simulation results to the turbulence model (com-

pared to soil moisture, for example) may reflect the influence of the lateral boundary

forcing. The lateral boundary conditions are time dependent, but are only updated

hourly. Intermediate values are linearly interpolated. The simulations of flow over

Askervein Hill (Chapter 7) showed that realistic turbulent inflow conditions were nec-

essary for satisfactory results. The lateral forcing in the Riviera is not fully turbulent,

so the turbulence must develop while the flow progresses through the domain and is

influenced by the complex topography. Small-scale motions are present in the simula-

tions (see the contour plots and cross-sections in Section 8.5), but the afternoon winds

are quite strong, yielding a relatively short effective residence time of air parcels in the

valley when compared to the 30-hour simulation time. Thus, small differences that
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Figure 8.39: Surface time series comparisons at Bosco di Sotto (site A1) for (a) wind
speed and (b) wind direction. • Observations; ◦ MOISLU; × MOISLU-
DWLSMAG; 2 MOISLU-DRM-ADM0-SMAG
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Figure 8.40: Surface potential temperature time series. • Observations; ◦
MOISLU; × MOISLU-DWLSMAG; 2 MOISLU-DRM-ADM0-SMAG
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Figure 8.41: Potential temperature soundings at 1508 UTC. Observations;
MOISLU; MOISLU-DWLSMAG; MOISLU-DRM-ADM0-SMAG
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Figure 8.42: Vertical cross-sections of (a) resolved uw and (b) SFS τ13 stress (m
2/s2)

perpendicular to valley axis at site A1 using DRM-ADM0-SMAG. Time averaged
between 1300 and 1500 UTC at 300 s intervals.
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Figure 8.43: Vertical cross-sections of (a) resolved vw and (b) SFS τ23 stress (m
2/s2)

perpendicular to valley axis at site A1 using DRM-ADM0-SMAG. Time averaged
between 1300 and 1500 UTC at 300 s intervals.
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Figure 8.44: Vertical profile of resolved, subfilter-scale, and total stress for (a) uw and
(b) vw at the valley floor using DRM-ADM0-SMAG. Time averaged between 1300
and 1500 UTC at 300 s intervals.
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Figure 8.45: Absolute difference for surface station time series at site A1 for MOISLU
and MOISLU-DRM-ADM0-SMAG simulations, for (a) potential temperature, (b)
wind speed, and (c) wind direction.



268 CHAPTER 8. SIMULATIONS OF FLOW IN A STEEP ALPINE VALLEY

0 5 10 15 20
0

0.2

0.4 (a)

θ 
(K

)

0 5 10 15 20
0

0.5

1
(b)

U
 (

m
/s

)

0 5 10 15 20
0

20
40
60
80

(c)
φ 

(d
eg

re
es

)

0 5 10 15 20
0

0.5

1
(d)

Time (UTC)

q 
(g

/k
g)

Figure 8.46: Root-mean-square difference for sounding profiles at site A1 for MOISLU
and MOISLU-DRM-ADM0-SMAG simulations as a function of time, for (a) potential
temperature, (b) wind speed, and (c) wind direction.

arise due to different turbulence models (or topographic shading and other parameter-

izations) do not have time to manifest themselves especially when along-valley winds

are strong. Figure 8.47 shows the differences that occur in a one-hour simulation

using identical initial and boundary conditions, but different turbulence models. It is

clear that the effect of the turbulence closure is not negligible; however, it is difficult

to quantitatively evaluate the performance of the models because of the lack of high-

resolution observation data. Simulations over the entire day may be more strongly

influenced by lateral boundary conditions and surface characteristics, but the finer

details change as well. It is especially in the near-surface region of the flow, where

turbulence models are important, that accurate predictions of mixing and transport

are needed for air pollution.

8.7 Conclusions

We have shown that ARPS can accurately reproduce the valley winds and circulations

that were observed under convective conditions during the MAP-Riviera project field
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(a)

(b)

Figure 8.47: Cross-valley winds (vectors) and along-valley winds (m/s, shaded: blue
(down-valley), red (up-valley)) at 1300 UTC from the 350 m grid for (a) TKE-1.5
and (b) DRM-ADM0-SMAG turbulence closures. Simulations are from 1200 to 1300
UTC using identical initial and boundary conditions.
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campaign of 1999. This success required careful initialization with high-resolution

land use and soil moisture data sets, among other considerations. In contrast, a

straightforward grid nesting approach did not yield satisfactory results. The sensi-

tivity of the results to changes in simulation settings was explored by comparisons

to observed soundings and surface measurements on the Riviera Valley floor. It is

found that even with strong local thermal forcing, the onset and magnitude of the

up-valley winds are highly sensitive to surface fluxes in areas which are well outside

the high-resolution domain. These processes directly influence the flow structure in

the high-resolution domain via its lateral boundary conditions, but are inadequately

resolved on the coarser grid of the previous nesting level. While the impact of to-

pographic shading on the flow dynamics is small, the improvement in the radiation

curves is significant. High-resolution landuse data also improve agreement with field

measurements. The sensitivity to surface conditions, particularly soil moisture, points

to a need for better surface characterization datasets for initialization.

The effect of different turbulence models in the Riviera Valley is unclear. Simula-

tions without a turbulence model were poor. Results with the dynamic reconstruction

approach (of Chapters 6 and 7), however, did not differ appreciably from the stan-

dard TKE-1.5 closure, perhaps because the turbulent stresses were only significant

in the lowest 500 m near the surface. Strong forcing at the lateral boundaries may

also limit the development of turbulent structures within the nested domain. The

use of two-way grid nesting should be explored to determine the effects of interaction

of higher-frequency motions (in time) across the boundaries. Higher grid resolution

will allow the representation of finer-scale motions and may improve the ability of the

SGS turbulence models to contribute appropriately under stable stratification.



Chapter 9

Summary and recommendations

9.1 Summary

Large-eddy simulations of the atmospheric boundary layer are strongly influenced by

the selection of the lower boundary conditions and turbulence models near the sur-

face. In this dissertation, a new turbulence closure approach has been developed and

validated for a variety of turbulent flow applications. The method is based on scale

partitioning which also accommodates the role of near-surface stresses for flow over

rough surfaces. We have demonstrated that a systematic approach which takes into

account the effect of numerical errors, such as finite-difference and aliasing (Chapter

4), is capable of providing significant improvements over traditional methods. This

is the first time, to our knowledge, that reconstruction (scale-similarity) or dynamic

turbulence models have been applied to full-scale simulations of the atmospheric

boundary layer over either flat or complex terrain.

Our explicit filtering and reconstruction approach involves the application of an

explicit filter to separate the resolved and subfilter scales in LES. The resolved sub-

filter scales can be reconstructed using a series expansion, such as the Taylor series

(Chapter 3) or approximate deconvolution methods, while the subgrid-scale stresses

must be modeled, for example with an eddy-viscosity model.

The first validation of this approach was for low Reynolds number channel flow

(Chapter 5), where we found that increasing levels of reconstruction (for the RSFS

component) improved the agreement with direct numerical simulation (DNS) results.

The dynamic reconstruction model (DRM) combines reconstruction with a dynamic

271
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eddy-viscosity model (Smagorinsky). A significant discovery was that the SFS stresses

grow with increasing reconstruction with the DRM, largely from the contribution of

the RSFS components. The agreement with stresses extracted from DNS data is

excellent.

When applied to neutrally-stratified atmospheric boundary layer flows (Chapter

6), the explicit filtering and reconstruction approach requires augmentation from a

near-wall stress layer. This enhanced stress layer represents the stresses induced by

subgrid-scale surface roughness, poor resolution, and large grid aspect ratios near the

wall. We use the DRM (with either the Taylor series or approximate deconvolution

methods with the dynamic eddy-viscosity model of Wong & Lilly (1994)) together

with the near-wall stress model of Brown et al. (2001). This hybrid approach cor-

rects the near-wall behavior of the velocity profile in neutral boundary layer flow.

Agreement with similarity theory is evidenced by the reproduction of the expected

logarithmic profile near the wall. The level of reconstruction affects the partitioning

of the RSFS and SGS stresses, with the RSFS (and total SFS) contributions increas-

ing with increasing reconstruction level, as seen in the channel flow simulations in

Chapter 5.

We next evaluated the performance of the DRM for flow over Askervein Hill in

Scotland (Chapter 7). Field observations provided evidence of intermittent separa-

tion in the lee of the hill, which was not captured by simulations using standard

closure models (e.g. TKE-1.5). The DRM results (with the near-wall stress model)

did show the expected intermittent separation and hence improved agreement with

time-averaged measurements of flow speed-up over the hill. The Askervein simula-

tions also demonstrated that inclusion of terrain created difficulties for the dynamic

eddy-viscosity model. Increasing levels of reconstruction could only be accommo-

dated by removing the contribution of the dynamic model and replacing it with a

static-coefficient Smagorinsky model in the lowest few levels near the wall. The rea-

sons for the observed instabilities require future research on the behavior of stresses

in the near-wall region.

The ultimate test for our turbulence modeling approach was performed in simula-

tions of flow in the Riviera Valley in Switzerland (Chapter 8). Here, the steep terrain,

heterogeneous surface conditions, and lateral boundary conditions pose severe chal-

lenges to any numerical simulation. We performed simulations over a 30-hour period
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that coincided with observations during the MAP-Riviera project field campaign. The

simulations required careful selection of appropriate surface datasets and boundary

conditions. Results were particularly sensitive to soil moisture values. There was

excellent agreement with observations at surface stations, soundings, and aircraft

measurements. The use of the DRM (modified near the wall) in this valley flow was

successful, but was overshadowed by differences in surface fluxes determined by the

specification of surface characteristics. The lateral boundary conditions also largely

determined the flow forcing; e.g. afternoon flow conditions in the 350 m nesting level

were somewhat insensitive to small changes in the flow earlier in the day. The im-

plementation of two-way interactive nesting and the use of larger grid domains could

affect the development and impact of turbulent motions in the simulated Riviera

Valley atmosphere.

9.2 Recommendations

Given the improved results for atmospheric boundary layer simulations using the ex-

plicit filtering and reconstruction approach, it is clear that all LES codes will benefit

from the inclusion of scale-similar terms in the turbulence model. Implementation of

the series expansion models is straightforward. The dynamic eddy-viscosity model

of Wong & Lilly (1994) is also simple to implement, but does require modifications

near the surface for flow over complex terrain. These adjustments are not yet clearly

understood, and may perhaps be addressed by consideration of improved near-wall

stress models. Instead of the dynamic model, which can lead to instabilities over

terrain, a constant coefficient Smagorinsky model or the TKE-1.5 closure can easily

be used. These models require tunable coefficients, which are undesirable for general

flows. The improved correlations and reconstruction of the RSFS stresses will, how-

ever, still be beneficial, particularly in improving the alignment of stress tensors and

allowing for energy backscatter in the flow.

The sensitivity to surface boundary conditions has also been clearly shown in

all the simulations from the neutral boundary layer (flat terrain) to the complex

Riviera Valley flow. Much research is needed to construct a more robust near-wall

stress representation. Incorporation of tree and urban canopy information could, for

example, be beneficial. Simulations of real flow conditions (e.g. the Riviera Valley
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simulations, and general weather forecasting) also require detailed knowledge of the

soil and vegetation properties at the surface. The lack of accurate soil moisture data

at 1 km resolution, for example, was found to be the determining factor in the success

of the Riviera flow simulations. Radiation models are also currently limited to one

(vertical) dimension, but should include the influence of neighboring terrain on local

radiative heat fluxes that are important in steep terrain.

Extensive field campaigns and remote sensing developments are needed to obtain

the necessary input data for forecast models. The design of such field campaigns

could be greatly improved by examining model results like those obtained here for

the Riviera Valley. Grid nesting techniques at the lateral boundaries also need further

exploration. The transmission of turbulent fluctuations from the coarse to the fine

grid at the lateral boundaries (particularly for one-way grid nesting) is currently

severely limited by the grid resolution and the frequency at which lateral boundary

condition data are available. More frequent boundary condition updates and two-way

nesting techniques should be investigated.
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Appendix A

Taylor series expansion models

The forms of the models considered in the a priori tests are given below:

S: Smagorinsky

τij = −2(CS∆)2(SijSij)
1/2Sij

B: Bardina scale-similarity

τij = uiuj − uiuj

MC: Modified Clark

τij =
∆2

12
∂ui

∂xm

∂uj

∂xm

T4: Series expansion, 4th order

τij = uiuj − uiuj − ∆2

24

(
ui∇2uj + uj∇2ui

)

MT4: Modified series expansion, 4th order

τij = uiuj − uiuj − ∆2

24

(
ui∇2uj + uj∇2ui

)
+ ∆2

24
(ui∇2uj + uj∇2ui)

MT6: Modified series expansion, 6th order

τij = uiuj − uiuj − ∆2

24

(
ui∇2uj + uj∇2ui

)
+ ∆2

24
(ui∇2uj + uj∇2ui)

+ ∆4

1152

(
ui

∂4uj

∂x4 + ui
∂4uj

∂y4
+ ui

∂4uj

∂z4
+ uj

∂4ui

∂x4 + uj
∂4ui

∂y4
+ uj

∂4ui

∂z4

)

− ∆4

1152

(
ui

∂4uj

∂x4 + ui
∂4uj

∂y4
+ ui

∂4uj

∂z4
+ uj

∂4ui

∂x4 + uj
∂4ui

∂y4
+ uj

∂4ui

∂z4

)

+ 5∆4

1728

(
ui

∂4uj

∂x2∂y2
+ ui

∂4uj

∂y2∂z2
+ ui

∂4uj

∂x2∂z2
+ uj

∂4ui

∂x2∂y2
+ uj

∂4ui

∂y2∂z2
+ uj

∂4ui

∂x2∂z2

)

− 5∆4

1728

(
ui

∂4uj

∂x2∂y2
+ ui

∂4uj

∂y2∂z2
+ ui

∂4uj

∂x2∂z2
+ uj

∂4ui

∂x2∂y2
+ uj

∂4ui

∂y2∂z2
+ uj

∂4ui

∂x2∂z2

)

+∆4

576

(
∇2ui∇2uj −∇2ui∇2uj

)

(A.1)
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where Sij is the filtered velocity strain tensor, and CS is the Smagorinsky constant,

here taken to be 0.09 (Bardina et al., 1983) (which does not affect correlations, but

does affect ratios). The modified Clark model can be obtained from a rearrangement

of the 4th-order series expansion model, as derived below, and is a variation of the

model considered by Clark et al. (1979). Here filtering is applied to the product of

the two derivatives, whereas in the original, each term is separately filtered.

The modified Clark model is derived by “unbarring” terms in the τik expansion,

i.e., removing one level of filtering, using Eq. 3.10. Wherever terms of the form

ui − ∆2

24
∇2ui appear, they can be replaced (to 2nd-order accuracy) by the unfiltered

variable ui. This simplifies terms in the derivation of the evolution equation (3.12)

for the modeled SFS stress. We now apply “unbarring” to the SFS stress model given

in Eq. 3.13. First, rewriting the second-derivative terms using the product rule, we

obtain

τik = uiuk − uiuk −
∆2

24
ui∇2uk −

∆2

24
uk∇2ui +O(∆4)

τik = uiuk − uiuk −
∆2

24
∇2uiuk +

∆2

12

∂uk
∂xj

∂ui
∂xj

+O(∆4) .

Now “unbarring” the first and third terms on the right-hand side, we obtain uiuj,

which cancels the second term, and gives

τik =
∆2

12

∂uk
∂xj

∂ui
∂xj

+O(∆4) , (A.2)

which shows that the SFS stress is 2nd-order in the filter width. It can be shown that

this form also satisfies the evolution equation for τik to fourth order.



Appendix B

Subfilter-scale scalar transport

modeling∗

B.1 Introduction

Large-eddy simulation (LES) is an important tool for studying meso-scale atmospheric

flow fields, where practical grid sizes are much larger than what is required to resolve

all of the turbulent motions. The quality of the subfilter-scale (SFS) model used

to represent the unresolved motions is thus very important for accurate calculations.

Cederwall & Street (1999) showed that use of an improved SFS model revealed turbu-

lent episodes known to occur in the stable boundary layer but not found in previous

simulations.

The transport of pollutants is difficult to model but is of particular interest in the

atmospheric boundary layer (ABL). Most simulations use an eddy-diffusivity model

in which the SFS transport terms are aligned with the resolved-scale strain rate and

are dissipative. Here, a series expansion model is described for the unclosed terms of

the scalar transport equation, analogous to the model presented by Street (1999) and

Katopodes et al. (2000b) (see Chapter 3) for the momentum equation. This model has

no free parameters, is straightforward to derive, and correlates very well with direct

numerical simulation (DNS) data in a priori tests. The model is of scale-similar form,

∗This appendix is a reproduction (with minor modifications) of the paper “Subfilter-scale scalar
transport for large-eddy simulation” by Fotini V. Katopodes (the principal author), Robert L. Street,
and Joel H. Ferziger, published in the proceedings of the 14th Symposium on Boundary Layers and
Turbulence, American Meteorological Society, August 2000, pages 472-475 (Katopodes et al., 2000a).
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and thus allows backscatter, or scalar flux from small to large scales. This is believed

to be especially important when the large scales are not fully resolved in the ABL

(Mason & Thomson, 1992).

To model the unclosed SFS terms in the scalar transport equation, we use suc-

cessive inversion of a Taylor series expansion to express the unfiltered velocity and

scalar concentration in terms of their filtered (resolved) counterparts. We then derive

SFS models of arbitrary order of accuracy in the filter width. Furthermore, the SFS

model satisfies the evolution equations for the SFS scalar transport to the specified

order of accuracy.

This appendix presents the derivation of the new SFS model, followed by prelimi-

nary tests of the model using a priori tests with DNS data of sheared, stably-stratified

homogeneous turbulence. We also describe the implementation of this model.

B.2 Closure models for scalar transport

The scalar transport equation is given by

∂θ

∂t
+ uj

∂θ

∂xj
= κ

∂2θ

∂xj∂xj
(B.1)

where uj denotes the velocity, θ is the scalar variable of interest (such as concentra-

tion or temperature), and κ is its diffusivity. Repeated indices indicate summation.

Applying a spatial filter to this equation, we obtain

∂θ

∂t
+ uj

∂θ

∂xj
= κ

∂2θ

∂xj∂xj
− ∂Qj

∂xj
(B.2)

where

Qj = ujθ − ujθ (B.3)

is the subfilter-scale scalar flux which must be modeled. The anisotropic Gaussian

filter is used here, where ∆x,∆y,∆z are the filter widths in each direction. Other

spatially compact filters, including asymmetric filters, give similar results, but with a

change in the expansion coefficients, as described below (see Shah & Ferziger, 1995).

The filtering operation is assumed to commute with the spatial derivatives, which
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is true for spatially homogeneous filters. Some error is introduced if this is not so

(Ghosal & Moin, 1995).

The traditional procedure uses scaling and physical arguments to model the un-

closed terms in Eq. B.3. A gradient diffusion form is often assumed, where the SFS

scalar flux is related to gradients of the resolved quantity by

Qj = −κT
∂θ

∂xj
, (B.4)

where κT is the eddy diffusivity. In LES, a common treatment is to use the Smagorin-

sky model (1963), which assumes

κT =
1

σT
(CS∆)2(SijSij)

1/2Sij , (B.5)

where CS is the Smagorinsky constant, σT the turbulent Schmidt number (usually

chosen to be approximately 1), and Sij the resolved scale strain rate tensor. In

ABL simulations, prognostic equations are often used to determine κT based on the

turbulent kinetic energy (TKE).

Further developments in SFS modeling for LES have led to dynamic and mixed

models (see Piomelli, 1999). These improved models have not been widely applied in

atmospheric simulations; Cederwall & Street (1999) used a dynamic mixed model to

simulate a stable boundary layer with good results.

Here, we do not use an eddy-diffusivity model as above. Instead, we use a model of

the scale-similarity form, and do not assume a form for the SFS flux, but seek to model

the unresolved velocity and scalar fields directly. In the spirit of velocity estimation

models recently introduced (Geurts, 1997; Domaradzki & Saiki, 1997; Stolz & Adams,

1999), we follow a mathematical approach to obtain an approximate expression for

the the unresolved variables and use these to calculate the SFS scalar flux.

This model does not require calculation of extra prognostic equations and is free

of adjustable coefficients. It can be shown (see Chapter 3) that the model presented

here satisfies the evolution equations for the SFS scalar flux to fourth order in the

filter width. Thus, the effects of buoyancy, Coriolis forcing, pressure, advection, and

diffusion are naturally included in the model and do not need special treatment.

Furthermore, the model can be specified to any desired order of accuracy.
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The goal of a closure model is to express the unresolved quantities in terms of the

known (computable) resolved quantities, i.e., we seek to write θ = f(θ). With that

aim, we introduce a multi-dimensional Taylor expansion for the scalar field at any

point,

θ(x′j) = θ(xj) + (x′m − xm)
∂θ(xj)

∂xm

+
1

2
(x′m − xm)(x′n − xn)

∂2θ(xj)

∂xm∂xn
+ · · · , (B.6)

using index notation for compactness. A similar expression can be written for the

velocity field.

We now apply the Gaussian filter, which eliminates all terms with odd powers of

x, y, or z, due to the filter symmetry, so that

θ(x, y, z) = θ +
∆2x
24

∂2θ

∂x2
+

∆2y
24

∂2θ

∂y2
+

∆2z
24

∂2θ

∂z2

+
∆4x
1152

∂4θ

∂x4
+

∆4y
1152

∂4θ

∂y4
+

∆4z
1152

∂4θ

∂z4

+
∆2x∆

2
y

1728

∂4θ

∂x2∂y2
+

∆2y∆
2
z

1728

∂4θ

∂y2∂z2

+
∆2x∆

2
z

1728

∂4θ

∂x2∂z2
+O(∆6) . (B.7)

Rearranging and using this expression recursively, we obtain

θ(x, y, z) = θ − ∆2x
24

∂2θ

∂x2
− ∆2y

24

∂2θ

∂y2
− ∆2z

24

∂2θ

∂z2

+
∆4x
1152

∂4θ

∂x4
+

∆4y
1152

∂4θ

∂y4
+

∆4z
1152

∂4θ

∂z4

+
5∆2x∆

2
y

1728

∂4θ

∂x2∂y2
+

5∆2y∆
2
z

1728

∂4θ

∂y2∂z2

+
5∆2x∆

2
z

1728

∂4θ

∂x2∂z2
+O(∆6) , (B.8)
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which expresses the full scalar at a point (x, y, z) in terms of the filtered scalar at

that point. If the filter is isotropic, Eq. B.8 reduces to

θ = θ − ∆2

24
∇2θi +

∆4

1152

(
∂4θ

∂x4
+
∂4θ

∂y4
+
∂4θ

∂z4

)

+
5∆4

1728

(
∂4θ

∂x2∂y2
+

∂4θ

∂y2∂z2
+

∂4θ

∂x2∂z2

)
+O(∆6) . (B.9)

This simplified form of the expansion will be used in the remaining derivations, as the

anisotropic form is more cumbersome algebraically. Terms of O(∆4) and higher will

also be ignored subsequently. The anisotropic results to fourth order can be recovered

by replacing ∆2

24
∇2 by

∆2x
24

∂2

∂x2
+

∆2y
24

∂2

∂y2
+

∆2z
24

∂2

∂z2
. (B.10)

Now we can derive models for Qj by substituting the series expansions for θ

(Eq. B.9) and the analogous expression for velocity directly into Eq. B.3. When both

the unclosed and explicit terms are expanded, and terms of fourth order and higher

are neglected, we obtain

Qj = uiθ − uiθ −
∆2

24
ui∇2θ −

∆2

24
θ∇2ui

+
∆2

24
ui∇2θ +

∆2

24
θ∇2ui +O(∆6) . (B.11)

The first two terms are analogous to the Leonard terms in the SFS stress; the higher

order derivative terms can be shown to be dissipative (Clark et al., 1977).

B.3 A priori tests

A priori tests for several SFS models are performed using a direct numerical simu-

lation (DNS) dataset for stably-stratified homogeneous shear flow computed by Shih

et al. (2000). A priori tests indicate the degree of correlation between the modeled

and exact subfilter-scale terms (see Clark et al., 1977). These tests are useful indi-

cations of the expected performance of a SFS model in actual LES computations (a

posteriori tests), even though in this case the DNS data is for low Reynolds number
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flow. The DNS data are sampled on the scale of the LES grid and filtered using an

anisotropic Gaussian filter to obtain the LES field, ui. Then the LES field can be

used to generate higher order approximations using variations of Eq. B.11.

Tables B.1-B.2 show correlation coefficients (C) and ratios (R) for the subfilter-

scale quantities: Qi is the SFS flux, ∂Qj/∂xj is the divergence of the subfilter flux

which appears in the transport equations, and Qj∂θ/∂xj is the SFS scalar dissipation.

The ratio is the exact DNS rms value divided by the modeled rms value, and should

be close to one. For the scalar dissipation term, the ratio gives an indication of the

magnitude of the scalar dissipation which is captured by the model. For comparison,

the equivalent momentum terms are also listed.

Results are presented for the Smagorinsky (S), and 2nd- (E2), 4th- (E4), and 6th-

order (E6) series expansion models (using Eq. B.11). The E2 model is of the scale-

similar form considered by Bardina et al. (1983) for the SFS stress. LES to DNS grid

ratios of GR = 2, 4, 8 are considered, where ∆LES = GR ∆DNS. (Only the GR = 2, 8

cases are shown here.) In each case the filter-grid ratio is FGR = ∆/∆LES = 2.

For the E6 model and GR = 2, the correlation for the SFS scalar dissipation is

0.999, with the ratio of rms exact to modeled values at 1.021, indicating that the SFS

dissipation is captured to within 2%. On the other hand, the Smagorinsky model

for this case exhibits a correlation of -0.010, and a ratio of 1.904, indicating that the

representation of the SFS motions is extremely poor. In mesoscale simulations of the

atmosphere, the grid size will be considerably larger than the DNS grid size, making

it harder to construct the SFS motions accurately using knowledge of the resolved

scales only. However, even for GR = 8, the E6 model gives a ratio for the SFS scalar

dissipation of 1.273, with a correlation of 0.973, much higher than any other model

tested.

To illustrate the performance of the series model in representing the unresolved

field, Fig. B.1 shows contours of the scalar field with different levels of approximation

for θ, as given by Eq. B.8. The raw DNS data, which is sampled on an LES grid

defined by GR = 8, is best represented by the 6th-order model; contours shown for

this case (Fig. B.1d) indicate that the smaller features of the DNS data (Fig. B.1a)

are captured quite well, unlike the lower order models.
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B.4 Implementation

The expression for Qj given in Eq. B.11 can be directly substituted into the resolved

flow equation (B.2), which can then be discretized and solved numerically. This

series closure model eliminates the need for prognostic equations for quantities such

as turbulent kinetic energy that are usually used for turbulence closure in atmospheric

models. Furthermore, there are no parameters which need to be adjusted or calculated

(cf. the standard TKE models or dynamic Smagorinsky or dynamic mixed closure

models). The model should therefore not be computationally intensive.

No assumptions about the discretization were made in any of the derivations

above. The effects of discretization require modifications to the turbulence closure

approach, as described in Chapters 5 and 6. It is also important that the filter width

be at least twice the size of the grid spacing. Otherwise, as shown in Chapter 4 and

by Ghosal (1996), discretization error will be as large as the effect of the SFS model.

B.5 Conclusion

The series model is easy to implement and provides an estimate of the SFS flux to

any order of accuracy desired. The a priori tests indicate that the series expansion

model is considerably better than the eddy-diffusivity closure models traditionally

used to represent SFS scalar transport. The model has no free parameters and does

not require the solution of additional prognostic equations. The series model satisfies

the evolution equations for the SFS flux to the appropriately predefined order of

accuracy, meaning that it is influenced by buoyancy, Coriolis, pressure, advection,

and diffusion effects. It is expected that an improved SFS closure model will lead to

significantly more accurate simulations of the atmospheric boundary layer, yielding

insight into turbulent motions which transport pollutants.
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τ12
∂τ1j

∂xj
τij

∂ui

∂xj
Q1 Q2 Q3

∂Qj

∂xj
Qj

∂ρ
∂xj

S C 0.1610 0.4746 0.6962 −0.1678 −0.0098 0.0094 0.0019 −0.0097
R 3.5042 2.8092 1.4780 3.6150 0.6964 1.1373 0.4328 1.9040

E2 C 0.9525 0.9194 0.9665 0.9697 0.9354 0.9451 0.9196 0.9876
R 1.3367 1.9179 1.3666 1.4497 1.4200 1.4629 2.0252 1.4350

E4 C 0.9875 0.9763 0.9917 0.9921 0.9803 0.9851 0.9739 0.9973
R 1.0702 1.2636 1.0724 1.1242 1.0933 1.1085 1.2968 1.1032

E6 C 0.9969 0.9937 0.9972 0.9980 0.9941 0.9959 0.9916 0.9994
R 1.0097 1.0611 1.0062 1.0346 1.0160 1.0209 1.0750 1.0207

Table B.1: Gaussian Filter: Correlations, GR = 2, FGR = 2.

τ12
∂τ1j

∂xj
τij

∂ui

∂xj
Q1 Q2 Q3

∂Qj

∂xj
Qj

∂ρ
∂xj

S C 0.0925 0.3041 0.3920 −0.2494 0.0064 0.0842 0.0148 −0.0395
R 4.9880 3.1754 2.0092 11.7193 1.8005 2.7365 1.3796 2.8186

E2 C 0.7759 0.7852 0.8181 0.8901 0.7516 0.7583 0.7857 0.9047
R 2.8324 4.1177 3.1285 2.7467 2.8250 2.9520 4.5566 2.8349

E4 C 0.8769 0.8729 0.8939 0.9431 0.8553 0.8595 0.8684 0.9459
R 1.5989 2.0326 1.7325 1.5968 1.6290 1.6734 2.2085 1.6354

E6 C 0.9407 0.9326 0.9422 0.9733 0.9231 0.9288 0.9284 0.9727
R 1.2301 1.4111 1.3038 1.2506 1.2676 1.2895 1.5104 1.2727

Table B.2: Gaussian Filter: Correlations, GR = 8, FGR = 2.
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Figure B.1: Contour plots of LES estimates for θ on an x1, x3-plane, GR = 8. (a)
Sampled DNS field; (b) 6th-order estimate; (c) 4th-order estimate; (d) 2nd-order
estimate.



Appendix C

Advanced Regional Prediction

System details

C.1 LES code selection

The essence of modeling turbulent flows lies in a synthesis of a robust numerical

code, appropriate boundary conditions, an accurate SFS model, and a properly ar-

ranged grid. Several LES codes were considered for the atmospheric boundary layer

simulations performed in this work, among those: the Stanford Environmental Fluid

Mechanics Laboratory (EFML) code developed by Zang et al. (1994) (and subse-

quently modified by Calhoun (1998), Cui (1999), and Zedler (2002)), the RAMS code

(Pielke et al., 1992), NCAR’s LES code (Moeng, 1984), and the ARPS code (Xue

et al., 1995). We note, however, that a study by Andren et al. (1994) concluded that

differences in the numerics of the LES codes were less significant than SFS closure

models. Andren et al. (1994) ran four LES codes (including the NCAR code consid-

ered here) with the same closure model and obtained fairly good convergence of the

mean profiles. Generally, the differences due to SFS models were found to be more

significant for the neutrally stratified flow than for previous tests of convective flow.

Thus, while we prefer to have a code with good numerics, we need not be particularly

concerned about enormous differences if different codes were used. The main reasons

for choosing ARPS stem from our selected flow applications. The EFML code was

intended for lower Reynolds number laboratory-scale flows and is not easily adapted

287
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for the atmospheric boundary layer. The NCAR code is intended for idealized simu-

lations and is not suited for complex terrain. RAMS can accommodate terrain and

the appropriate initial and boundary conditions for a full-scale ABL simulation, but

uses upwind advection schemes and requires a minimum eddy-viscosity value, both

of which can cause excess dissipation. Also, the code is not documented as carefully

as ARPS and therefore not as easy to modify.

C.2 ARPS numerical formulation

ARPS has been developed and tested at the Center for Analysis and Prediction of

Storms at the University of Oklahoma over the last decade. This prediction system

was designed for application to convective and cold-season storms, including real-time

data assimilation and extensive post-processing features. A detailed description of

this code is available in the ARPS User’s Manual (Xue et al., 1995) and in Xue et al.

(2000, 2001). The numerical schemes are robust (see below) and the code can be

run in parallel. These are attractive features for testing subfilter-scale models for

simulations of the ABL.

The dynamic equations solved by ARPS are the three-dimensional, compressible∗

non-hydrostatic Navier-Stokes equations, over generalized terrain-following coordi-

nates. The grid is orthogonal in the horizontal direction, but stretched in the vertical

to follow the terrain, as in the so-called σ-z coordinate system. The model includes

Coriolis forcing. Equations are solved for the three wind velocity components (u, v, w),

pressure (p), potential temperature (θ), and turbulent kinetic energy (k), if used for

the subfilter-scale model. Potential temperature is a conserved variable in adiabatic

flows and is commonly used in atmospheric simulations; it is analogous to density,

∗Though the atmosphere is compressible, compressibility effects are not generally very significant.
Baines (1995) estimates that flows with vertical scales of less than 10 km are effectively incompress-
ible. For vertical domains on the order of 10 km, the compressible flow equations should be used.
The compressible Navier-Stokes equations are computationally more efficient than the incompress-
ible equations which require solution of a Poisson equation for pressure. The compressible equations
are thus often used for atmospheric flows with smaller vertical scales, even though the equations
allow acoustic modes that reduce the time step required for stability. A mode-splitting algorithm
for time advancement with the compressible equations, is an option that allows small time steps for
the acoustic modes, and large time steps for other terms (Klemp & Wilhelmson, 1978), as used in
ARPS.
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and is defined as

θ = T

(
p0
p

)0.286
(C.1)

where T is absolute temperature, p is atmospheric pressure, and p0 is a reference

atmospheric pressure usually taken to be 100 kPa or the pressure at sea level. This

scales the temperature with elevation in the atmosphere according to the adiabatic

lapse rate, so that background hydrostatic variation is not considered when looking

at temperature gradients.

A coordinate transformation is used to map the terrain-following coordinates to a

regular grid in computational space. Several map projections can be used for larger

scale simulations. The filtered momentum equations are derived in Appendix D and

described in Chapter 6 of the ARPS User’s Manual (Xue et al., 1995). ARPS also

solves prognostic equations for water vapor, cloud water, rainwater, cloud ice, snow,

and graupel (hail). These quantities are affected by surface radiative forcing and

convective fluxes which are parameterized in the code.

ARPS has options for 2nd- or 4th-order quadratically conservative differencing

for momentum terms, as well as a corrected transport scheme and a positive-definite

centered difference scheme for scalar transport advection terms. Second order central

difference schemes are used for all other terms. The discretization uses a staggered

Arakawa-C grid, uniform in the horizontal, and stretched in the vertical. Temporal

discretization uses a mode-splitting technique to accommodate high-frequency acous-

tic waves. The large time steps use the leapfrog method, while first-order backward

explicit time stepping is used for the small time steps, except for terms responsible

for vertical acoustic propagation, which are treated implicitly (Klemp & Wilhelmson,

1978).

ARPS has options for a Rayleigh damping layer or radiation boundary conditions

at the upper boundary. At the lateral boundaries, solid wall, periodic, zero-gradient,

or radiation conditions can be used. Externally specified boundary conditions can

also be applied. The top and bottom boundaries are treated as rigid or free-slip

boundaries, and surface fluxes are parameterized to account for the influence of the

bottom surface. ARPS parameterizes surface momentum, heat, and moisture fluxes at

the surface using bulk aerodynamic drag laws and stability-dependent similarity forms

(such as Monin-Obukhov). The soil model of Noilhan & Planton (1989) accounts for
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radiative forcing at the surface. Surface data can be input using several pre-processing

routines. Section 2.2 also provides details on the ARPS formulations.

Standard turbulence modeling options in ARPS currently include several eddy

viscosity models: constant eddy viscosity, the Smagorinsky model, and constant eddy

viscosity plus Smagorinsky, as well as a turbulent kinetic energy 1.5-order closure

scheme (Deardorff, 1980). The SGS models can be used in anisotropic forms to allow

for different horizontal and vertical filtering sizes. The models currently implemented

often do not provide enough dissipation at the highest frequencies, so computational

mixing terms (2nd- or 4th-order) are added for stability. Because acoustic modes in

the atmosphere may become unstable, ARPS also includes divergence damping to

diminish contributions from acoustic vibrations.

C.3 ARPS validation

ARPS has been extensively validated by the developers in a variety of test cases

ranging from symmetry tests to full-scale storm-prediction. For example, the code

was tested for symmetry with random initial perturbations. Simulations of viscous

Beltrami flow, a Coriolis test case, and the Taylor-Green problem were performed

to compare with the analytical solutions. Simulation of the May 20, 1977 Del City

Supercell storm is provided as the standard test case for users of the code. Flows with

inertial gravity waves were simulated to test the mode-splitting time integration tech-

nique. The interaction of terrain was included in several tests of linear and nonlinear

mountain waves over an Agnesi hill. Benchmark tests have also been performed for

the soil model on the Wangara and FIFE boundary layer profiles. Real-time forecasts

were also performed in which the model was initialized with non-homogeneous initial

and boundary conditions and used to predict storm evolution. ARPS successfully

predicted a cluster of storms on a 3 km grid, a few hours in advance. Details of these

tests are given in Chapter 13 of the ARPS User’s Manual (Xue et al., 1995) and Xue

et al. (2003). ARPS has also been applied to many other mesoscale flows; see for

example the work of Anquetin et al. (1998) and Rao et al. (1999).



Appendix D

Governing equations for ARPS

This appendix presents a derivation of the ARPS equations, taking special care with

the explicit filtering and discretization operators so as to obtain the complete LES

equations. The ARPS equations are given in Xue et al. (1995, 2000, 2001) but the

definition of the exact SFS stress is unclear. As this dissertation focuses on the

development and testing of SFS models, primarily with ARPS, it is important to

define the SFS stresses carefully. The governing equations for ARPS are first written

in a map projection system (x, y, z) and then transformed to curvilinear terrain-

following coordinates (ξ, η, ζ) which allow stretching in the vertical direction. There

are several ways to derive the ARPS equations. A stretching and rotation matrix

can, for example, be applied to the Navier-Stokes equations in spherical coordinates

(see e.g. Haltiner, 1971). Instead, we begin with the vector form of the Navier-

Stokes equations, then transform directly to mapped coordinates. Much of this follows

the discussion of Fiedler (1998) in his handout about the dynamical equations in

ARPS. The last section of this appendix describes the approximations made when

the governing equations are discretized.
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D.1 Transformation to Lambert conformal

coordinates

The vector form of the compressible Navier-Stokes equations with conservation of

mass, neglecting the terms due to molecular viscosity is

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ 2Ω× u (D.1)

∂ρ

∂t
+ ∇ · (ρu) = 0 . (D.2)

The viscous stress terms are generally neglected in atmospheric flows where the vis-

cous layer comprises only the first few millimeters above the surface. We can now

express this vector equation in our choice of coordinates. We choose the Lambert

conformal mapping which is commonly used for mid-latitudes.

The transformation of the square of a linear segment ds2 into orthogonal q-

coordinates is useful for deriving the appropriate mapping factors. Following Kreyszig

(1993, p. 490) we write

ds2 =
3∑

i=1

dx2i = dx21 + dx22 + dx23 (D.3)

where xi are Cartesian coordinates. By the chain rule:

dxi =
3∑

j=1

∂xi
∂qj

dqj (D.4)

where qi are the the new coordinates, which are a function of x1, x2, x3. The squared

length of the element ds can then be expressed

ds2 =
3∑

i=1

dxidxi =
3∑

i=1



3∑

j=1

∂xi
∂qj

dqj
3∑

k=1

∂xi
∂qk

dqk


 (D.5)

where we can define

h21 =
3∑

i=1

(
∂xi
∂q1

)2
, h22 =

3∑

i=1

(
∂xi
∂q2

)2
, h23 =

3∑

i=1

(
∂xi
∂q3

)2
(D.6)
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and after some simplification (invoking orthogonality of the q-coordinates), we obtain

ds2 = h21dq
2
1 + h22dq

2
2 + h23dq

2
3 . (D.7)

Similarly, the vector dx is written

dx = dx1i+ dx2j+ dx3k (D.8)

and for q-coordinates

dq = h1dq1e1 + h2dq2e2 + h3dq3e3 (D.9)

where ei are the orthogonal unit vectors in the directions of q coordinate system.

To express the governing equations in Lambert coordinates we must determine the

metric terms hi. The Lambert coordinate system (x, y, z) can be related to spherical

coordinates (λ, ψ, r) with:

ψ(x, y) = ψ(Q) (D.10)

λ(x, y) =
1

n
arctan(−y, x) + λ0 , (D.11)

r = z + a , (D.12)

where Q =
√
x2 + y2 and

xc = r cosλ sinψ (D.13)

yc = r sinλ sinψ (D.14)

zc = r cosψ . (D.15)

Here r is the distance from the center of the earth, a is the radius of the earth, λ

denotes longitude, ψ is the co-latitude, and (xc, yc, zc) are the Cartesian coordinates.

The Lambert coordinates are conformal and describe the projection of the surface

of a sphere onto a cone, which is then cut and flattened into a plane. The −y axis
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follows the longitude λ0.

We define the base vectors

ex = eλ
∂λ

∂x
+ eψ

∂ψ

∂x
(D.16)

ey = eλ
∂λ

∂y
+ eψ

∂ψ

∂y
(D.17)

ez = er . (D.18)

To satisfy orthogonality, we must have ex ·ey = 0. Using this together with Eqs. D.10-

D.11, we can solve for ψ:

ψ = 2arctan

((
Q

b

)1/n)
(D.19)

and inversely, Q = b tann
(
ψ
2

)
. b and n are determined by the choice of the true

latitude and longitude.

Using Eq. D.6 to get h2x = ex · ex, h2y = ey · ey, and h2z = ez · ez we find

hx = hy =
r sinψ

nQ
, and hz = 1 . (D.20)

We define the map factor m to be the inverse of hx, representing the ratio of the

distance traveled in the Lambert coordinate system to the physical distance traveled

on the earth’s surface.

We can use

u · ∇u =
∑

i

∑

j

ui
hj

(
∂ui
∂xj

+
ui
hi

∂hi
∂xj
− uj
hi

∂hj
∂xi

)
ei (D.21)

to obtain

u · ∇u =

(
mu

∂u

∂x
+mv

∂u

∂y
+ w

∂u

∂z
− uv∂m

∂y
+ v2

∂m

∂x

)
ex

+

(
mu

∂v

∂x
+mv

∂v

∂y
+ w

∂v

∂z
+ u2

∂m

∂y
− uv∂m

∂x

)
ey
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+

(
mu

∂w

∂x
+mv

∂w

∂y
+ w

∂w

∂z

)
ez (D.22)

where we have neglected vertical derivatives of the metric terms. For the pressure

gradient, we can use

∇A =
1

h1

∂A

∂q1
e1 +

1

h2

∂A

∂q2
e2 +

1

h3

∂A

∂q3
e3 (D.23)

to obtain

∇p = m
∂p

∂x
e1 +m

∂p

∂y
e2 +

∂p

∂z
e3 (D.24)

The Coriolis term can be written directly in Lambert coordinates by first projecting

the rotation vector Ω into the Lambert coordinate directions:

2Ω = 0ex + f vey + fez , (D.25)

where f v is the vertical Coriolis parameter. Then the cross product gives

2Ω× u = (f vw − fv)ex + fuey − f vuez (D.26)

Combining all these terms, we obtain the momentum equations in transformed

Lambert coordinates:

∂u

∂t
+ mu

∂u

∂x
+mv

∂u

∂y
+ w

∂u

∂z
− uv∂m

∂y
+ v2

∂m

∂x
= −m

ρ

∂p

∂x
− (f vw − fv)

(D.27)

∂v

∂t
+ mu

∂v

∂x
+mv

∂v

∂y
+ w

∂v

∂z
+ u2

∂m

∂y
− uv∂m

∂x
= −m

ρ

∂p

∂y
− fu (D.28)

∂w

∂t
+ mu

∂w

∂x
+mv

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ g + f vu (D.29)

Finally, to transform Eq. D.2 we can use

∇ ·A =
1

h1h2h3

(
∂h2h3A1
∂q1

+
∂h1h3A2
∂q2

+
∂h1h2A3
∂q3

)
(D.30)
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to obtain
∂ρ

∂t
+m2

∂

∂x

(
ρu

m

)
+m2

∂

∂y

(
ρv

m

)
+

∂

∂z
(ρw) = 0 . (D.31)

D.2 The filtered momentum equations

We must apply an explicit spatial filter to formally derive the large-eddy simulation

equations. Before doing so, we put the momentum equations into divergence form.

We can use Eq. D.31 to write D.27 as

∂ρu

∂t
+ m2

∂

∂x

(
ρuu

m

)
+m2

∂

∂y

(
ρuv

m

)
+
∂ρuw

∂z
− ρuv∂m

∂y
+ ρv2

∂m

∂x

= −m∂p

∂x
− ρ(f vw − fv) . (D.32)

The v and w equations follow similarly and are not presented here. Now we apply a

discretization operator ̂ as well as a filter operator ^. We define a density-weighted

Favre combined filter with

˘̂ρ φ̃ ≡
^

ρ̂φ . (D.33)

The tilde (̃ ) and overbar operators denote the density-weighted discretization and

filtering operators, respectively (and are consistent with notation used elsewhere in

this dissertation). We assume everywhere that filters commute with differentiation

and that the map factor is constant over the filter width. For the u-equation, we

obtain

∂˘̂ρũ

∂t
+ m2

∂

∂x

(
˘̂ρũu

m

)
+m2

∂

∂y

(
˘̂ρũv

m

)
+
∂˘̂ρũw

∂z
− ˘̂ρũv

∂m

∂y
+ ˘̂ρṽ2

∂m

∂x

= −m∂p̃

∂x
− ˘̂ρ(f vw̃ − fṽ) (D.34)

We can rearrange by moving the unclosed filtered terms to the right-hand side to

obtain the traditional LES equation structure:

∂˘̂ρũ

∂t
+ m2

∂

∂x

(
˘̂ρũ ũ

m

)
+m2

∂

∂y

(
˘̂ρũ ṽ

m

)
+
∂˘̂ρũ w̃

∂z
− ˘̂ρũv

∂m

∂y
+ ˘̂ρṽ2

∂m

∂x
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= −m∂p̃

∂x
− ˘̂ρ(f vw̃ − fṽ)−m2 ∂

∂x

(
˘̂ρ

m
(ũu− ũ ũ)

)

− m2
∂

∂y

(
˘̂ρ

m
(ũv − ũ ṽ)

)
− ∂

∂z

(
˘̂ρ(ũw − ũ w̃)

)
. (D.35)

We have not separated the unclosed filtered terms associated with the derivatives of

the map factors. We can put Eq. D.35 back in convective form using the filtered

conservation of mass equation

∂˘̂ρ

∂t
+m2

∂

∂x

(
˘̂ρũ

m

)
+m2

∂

∂y

(
˘̂ρṽ

m

)
+

∂

∂z
(˘̂ρw̃) = 0 , (D.36)

to obtain

∂ũ

∂t
+ mũ

∂ũ

∂x
+mṽ

∂ũ

∂y
+ w̃

∂ũ

∂z
− ũv ∂m

∂y
+ ṽ2

∂m

∂x

= −m
˘̂ρ

∂p̃

∂x
− (f vw̃ − fṽ)− m2

˘̂ρ

∂

∂x

˘̂ρτ11
m
− m2

˘̂ρ

∂

∂y

˘̂ρτ12
m
− 1

˘̂ρ

∂˘̂ρτ13
∂z

(D.37)

The turbulence terms on the right-hand side have been grouped together under the

definition of the turbulent stress:

τij = ũiuj − ũiũj) (D.38)

We can also separate the turbulent stresses into the resolved subfilter-scale (RSFS)

and subgrid-scale (SGS) portions:

τij = ũiuj − ũiũj = (ũiuj − ũiũj) + (ũiũj − ũiũj) , (D.39)

where the second group of terms can be explicitly calculated using a reconstruction

procedure (see Chapters 5 and 6).



298 APPENDIX D. GOVERNING EQUATIONS FOR ARPS

D.3 Terrain-following coordinate transformation

We now transform the equations to a vertical coordinate ζ(x, y, z) which is constant

along the bottom topography. The transformation to terrain-following coordinates

is relatively simple, because the stretching occurs only in the vertical direction. We

define ξ = x and η = y. The transformation rules are given by

√
G
∂φ

∂x
=

∂J3φ

∂ξ
+
∂J1φ

∂ζ
(D.40)

√
G
∂φ

∂y
=

∂J3φ

∂η
+
∂J2φ

∂ζ
(D.41)

√
G
∂φ

∂z
=

∂φ

∂ζ
(D.42)

where the Jacobians of transformation are

J1 = −
∂z

∂ξ
, J2 = −

∂z

∂η
, J3 =

∂z

∂ζ
, (D.43)

and
√
G is the determinant of the Jacobian matrix and equal to J3.

The transformed version of D.37 becomes

∂ũ

∂t
+

mũ√
G

(
∂J3ũ

∂ξ
+
∂J1ũ

∂ζ

)
+
mṽ√
G

(
∂J3ũ

∂η
+
∂J2ũ

∂ζ

)
+

w̃√
G

∂ũ

∂ζ

− ũv√
G

(
∂J3m

∂η
+
∂J2m

∂ζ

)
+

ṽ2√
G

(
∂J3m

∂ξ
+
∂J1m

∂ζ

)

= − m
˘̂ρ
√
G

(
∂J3p̃

∂ξ
+
∂J1p̃

∂ζ

)
− (f vw̃ − fṽ)

− m2

˘̂ρ
√
G

(
∂

∂ξ

(
J3˘̂ρτ11
m

)
+

∂

∂ζ

(
J1˘̂ρτ11
m

))

− m2

˘̂ρ
√
G

(
∂

∂η

(
J3˘̂ρτ12
m

)
+

∂

∂ζ

(
J2˘̂ρτ12
m

))
− 1

˘̂ρ
√
G

(
∂˘̂ρτ13
∂ζ

)
(D.44)

and we note that the derivative of m in the ζ direction is zero. We can now define
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the contravariant velocity

W̃
c

=
1

J3
(m(ũJ1 + ṽJ2) + w̃) (D.45)

and rearrange the advective terms to obtain

∂ũ

∂t
+

mũ√
G

∂J3ũ

∂ξ
+
mṽ√
G

∂J3ũ

∂η
+ W̃

c∂ũ

∂ζ

+
mũ√
G

(
ũ
∂J1
∂ζ

+ ṽ
∂J2
∂ζ

)

− ũv√
G

(
∂J3m

∂η
+
∂J2m

∂ζ

)
+

ṽ2√
G

(
∂J3m

∂ξ
+
∂J1m

∂ζ

)

= − m
˘̂ρ
√
G

(
∂J3p̃

∂ξ
+
∂J1p̃

∂ζ

)
− (f vw̃ − fṽ)

− m2

˘̂ρ
√
G

(
∂

∂ξ

(
J3˘̂ρτ11
m

)
+

∂

∂ζ

(
J1˘̂ρτ11
m

))

− m2

˘̂ρ
√
G

(
∂

∂η

(
J3˘̂ρτ12
m

)
+

∂

∂ζ

(
J2˘̂ρτ12
m

))
− 1

˘̂ρ
√
G

(
∂˘̂ρτ13
∂ζ

)
(D.46)

To simplify the left-hand side further, first, we multiply by < ˘̂ρ > (plane-averaged

˘̂ρ) and
√
G and define

ρ∗ = < ˘̂ρ >
√
G , ũ

∗
= ρ∗ũ , ṽ

∗
= ρ∗ṽ , and W̃

∗

= ρ∗W̃
c

. (D.47)

Then we use the chain rule on the first two advection terms and the terms containing

derivatives of the map factor together with the fact that

∂J3
∂ξ

+
∂J1
∂ζ

= 0
∂J3
∂η

+
∂J2
∂ζ

= 0 , and
√
G = J3 (D.48)

to obtain

∂ũ
∗

∂t
+ mũ

∗∂ũ

∂ξ
+mṽ

∗∂ũ

∂η
+ W̃

∗∂ũ

∂ζ
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− ũv< ˘̂ρ >J3
∂m

∂η
+ ṽ2< ˘̂ρ >J3

∂m

∂ξ

= −m<
˘̂ρ >
˘̂ρ

(
∂J3p̃

′

∂ξ
+
∂J1p̃

′

∂ζ

)
− (f vw̃

∗ − fṽ∗)

− m2< ˘̂ρ >
˘̂ρ

(
∂

∂ξ

(
J3˘̂ρτ11
m

)
+

∂

∂ζ

(
J1˘̂ρτ11
m

))

− m2< ˘̂ρ >
˘̂ρ

(
∂

∂η

(
J3˘̂ρτ12
m

)
+

∂

∂ζ

(
J2˘̂ρτ12
m

))
− < ˘̂ρ >

˘̂ρ

(
∂˘̂ρτ13
∂ζ

)
(D.49)

where p̃ has been replaced by p̃
′
= p̃− < p̃ > since horizontal derivatives of the

plane-averaged pressure are by definition zero.

To simplify the right-hand side, we expand the SFS terms using the chain rule for

division, e.g.,

m2
∂

∂ξ

(
J3˘̂ρτ11
m

)
= m

∂

∂ξ

(
J3˘̂ρτ11

)
− ˘̂ρJ3τ11

∂m

∂ξ
. (D.50)

The derivatives of the map factor can be combined with those on the left-hand side

of Eq. D.49.

The final form of the equation reads

∂ũ
∗

∂t
+ mũ

∗∂ũ

∂ξ
+mṽ

∗∂ũ

∂η
+ W̃

∗∂ũ

∂ζ

= −m<
˘̂ρ >
˘̂ρ

(
∂J3p̃

′

∂ξ
+
∂J1p̃

′

∂ζ

)
− (f vw̃

∗ − fṽ∗)

− < ˘̂ρ >
˘̂ρ

[
m
∂

∂ξ

(
J3˘̂ρτ11

)
+m

∂

∂η

(
J3˘̂ρτ12

)

+
∂

∂ζ

(
˘̂ρτ13 ++mJ1˘̂ρτ11 +mJ2˘̂ρτ12

)]

− ṽ
∗

(
ṽ
∂m

∂ξ
− ũ∂m

∂η

)
− ρ∗(τ11 + τ22)

∂m

∂ξ
. (D.51)
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D.4 Implementation in ARPS

A few approximations are made when Eq. D.51 (and the equivalents for v and w) is

discretized for use in ARPS. First, the pressure gradient is absorbed into the Coriolis

forcing term, as is standard in atmospheric codes which use the geostrophic pressure

balance to relate the two. The ratio < ˘̂ρ >/˘̂ρ is therefore ignored. Second, this ratio

is neglected in the calculation of the SFS stress derivatives. In the calculation of the

scale-similarity terms, we use, e.g.

˘̂ρτ11 = ˘̂ρ(ũu− ũ ũ) ≈ < ˘̂ρ >(ũ?u? − ũ? ũ?) (D.52)

where ũ? indicates the reconstructed velocity (and is not the same as ũ∗). ARPS also

simplifies to, e.g., τ11 = < ˘̂ρ >νTS11, for the eddy viscosity terms, where νT is the

eddy viscosity and S11 is the strain-rate component, which includes appropriate map

factor and Jacobian terms. Finally, the last term in Eq. D.51 is neglected, as it is

much smaller than the contribution from the other map factor derivative terms. The

latter are often negligible in small domains where m does not vary much.

The application of the explicit filter is straightforward as it appears only in the

computation of the SFS stress terms. The discrete variable we solve for is, e.g. ũ.

Thus the explicit filter is needed only when computing τij, to prevent build-up of

energy in the high-wavenumber portion of the spectrum. The only change to the

code when filtering is treated explicitly is in the RSFS and SGS computations. The

explicit filter (usually a tophat or Gaussian) is used to reconstruct the RSFS terms.

An explicit test filter (usually twice the width of the explicit filter) is used in the SGS

computation for dynamic eddy-viscosity models. This is described in further detail

in Appendix E.



Appendix E

Dynamic reconstruction model

details

This appendix describes the procedure for calculating dynamic eddy-viscosity co-

efficients. The derivation is given for the dynamic mixed model using the tensor-

diffusivity model for the scale-similarity (RSFS) portion and Smagorinsky for the

SGS portion. The modifications for using the Bardina and high-order reconstruction

for the RSFS stress are also described. The Smagorinsky model described here was

used for the SGS stress in Chapter 5. The dynamic procedure for the Wong-Lilly

model used in Chapters 6-8 follows similarly.

E.1 Dynamic mixed model derivation

The static Smagorinsky model is known to be too dissipative (even in laminar flow),

to have incorrect wall behavior, and to give low correlations with the true SFS stress.

Eddy viscosity models do not allow backscatter from smaller to larger scales. Several

of these deficiencies are addressed when the coefficient is calculated dynamically. The

dynamic model must be implemented with care to correctly calculate the explicit and

test-filtered terms.

The procedure for calculating the Smagorinsky coefficient dynamically depends

on the Germano identity (Germano et al., 1991) which relates motions at the “grid

filter” and “test filter” levels. The test filtered equations are considered to be solved

on a coarser grid. The grid filter is more accurately termed the “explicit filter” and
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is usually related to the grid spacing.

In the dynamic equations, the exact SFS stress is given by

τij = uiuj − ũiũj (E.1)

whereas in the test-filtered dynamic equations, the exact stress is

Tij = ûiuj − ̂̃ucî̃ucj . (E.2)

This is clear from governing equations. We begin from the unfiltered Navier-Stokes

equations (as written in Eq. 5.1):

∂ui
∂xi

= 0 ,
∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Reτ

∂ui
∂xj∂xj

. (E.3)

Filtering and discretizing Eq. E.3, we obtain

∂ũi
∂t

+
∂ ˜̃ujũi
∂xj

= − ∂p̃

∂xi
+

1

Reτ

∂2ũi
∂xj∂xj

− ∂

∂xj

(
uiuj − ũiũj

)
(E.4)

We coarsen the grid (denoted by ũc) and apply the test filter (which is essentially the

explicit filter on the coarser grid resolution):

∂̂̃uci
∂t

+
∂
˜̂
ũcj
̂̃uci

c

∂xj
= −∂

̂̃pc

∂xi
+

1

Reτ

∂2̂̃uci
∂xjxj2

− ∂

∂xj

(
̂̃
uiuj

c −
̂̃
ũiũj

c
)
− ∂

∂xj

(
̂̃
ũiũj

c

− ˜̂
ũci
̂̃ucj

c
)

(E.5)

noting that ˜̃u
c
= ũc since the discretization operator is treated as a spectral cutoff

filter.

If instead we apply the coarse grid discretization operator, the explicit filter, and

the test filter in one step, we obtain

∂̂̃uci
∂t

+
∂
˜̂
ũcj
̂̃uci

c

∂xj
= −∂

̂̃pc

∂xi
+

1

Reτ

∂2̂̃uci
∂xjxj2

− ∂

∂xj

(
̂̃
uiuj

c − ˜̂
ũci
̂̃ucj

c
)

(E.6)

To solve each equation separately, the last terms on the right-hand sides would

be modeled. Since Eqs. E.5 and E.6 are equivalent, we can simply equate the SFS
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terms: (
̂̃
uiuj

c −
̂̃
ũiũj

c
)

︸ ︷︷ ︸
τ̃c
ij

+

(
̂̃
ũiũj

c

− ˜̂
ũci
̂̃ucj

c
)

︸ ︷︷ ︸
L̃c

ij

=

(
̂̃
uiuj

c − ˜̂
ũci
̂̃ucj

c
)

︸ ︷︷ ︸
T̃ c

ij

. (E.7)

L̃cij can be computed from the resolved velocities ũi. The other two groups of terms

must be modeled. We use the same type of mixed model for both:

(̂̃mc
ij − C ̂̃acij

)
+ L̃cij ≈

(
M̃ c

ij − CÃcij
)

(E.8)

where

mij ≈ ∆
2 ∂ũi
∂xk

∂ũj
∂xk

(E.9)

Mij ≈ α2∆
2∂
̂̃uci
∂xk

∂̂̃ucj
∂xk

(E.10)

aij ≈ 2∆
2|S̃|S̃ij (E.11)

Aij ≈ 2α2∆
2|̂̃Sc|̂̃Scij (E.12)

Terms mij and Mij are the RSFS component of the closure model, here shown with

the tensor-diffusivity model or Clark model (Winckelmans et al., 2001).

The SGS model represented in the terms aij and Aij is the Smagorinsky model,

τSGSij = −2ν̃T S̃ij = −2(C∆)2|S̃|S̃ij, (E.13)

where νT is the eddy viscosity, ∆ the filter width and Sij the strain rate tensor. We

now need to solve Eq. E.8 for the coefficient C, assuming that the same coefficient

can be used at both levels of the equations (Germano et al., 1991). The model pa-

rameter C∆ is calculated dynamically (Germano et al., 1991) using the least squares

approximation of Lilly (1992). We also assume that C is locally invariant and can be

pulled out of the explicit filter and test filters.

First let

r̃cij = L̃cij +
̂̃mc

ij − M̃ c
ij (E.14)
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q̃cij =
̂̃acij − Ãcij (E.15)

so that

r̃cij ≈ Cq̃cij . (E.16)

The error is defined as Eij = Cq̃cij − r̃cij. Using the method of least squares, we have

E = 〈EijEij〉 =
〈
C2q̃cij q̃

c
ij − 2Cq̃cij r̃

c
ij + r̃cij r̃

c
ij

〉
(E.17)

where E is the square of the error, and the brackets denote a local average in space.

(Planar averaging is usually performed in geometries which allow it, but here we use

the explicit filter to perform a local spatial average to be able to apply these models

to complex geometries.) Equating dE/dC to zero and solving for the location where

the squared error has a minimum, we obtain

C =

〈
q̃cij r̃

c
ij

〉

〈
q̃cij q̃

c
ij

〉 (E.18)

E.2 Dynamic mixed model - Bardina

The dynamic model can also be written using the scale-similarity model of Bardina

et al. (1983), by simply replacing mij with

mij = ũiũj − ũiũj . (E.19)

and likewise for Mij. Note that care must be taken to correctly calculate the explicit

filter and the test filter when computing the Bardina scale-similarity term.

E.3 Dynamic reconstruction model

The dynamic mixed model can also be formulated using the approximate deconvo-

lution method (ADM) (Stolz et al., 2001a) to reconstruct the RSFS portion of the

SFS stress. The ADM uses the van Cittert iterative method (van Cittert, 1931) to
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reconstruct the unfiltered velocity from the filtered velocity:

ũi = ũi + (I −G) ∗ ũi + (I −G) ∗ ((I −G) ∗ ũi) + · · · (E.20)

The coefficients for the van Cittert series are easily obtained from Pascal’s triangle.

For example, when n = 5, row n + 1 (where the first row contains only the number

1) contains 1 5 10 10 5 1. Adding neighboring pairs in a tree pattern and alternating

signs gives the coefficients for this series:

u?i = 6u− 15ui + 20ui − 15ui + 6ui − ui (E.21)

Similarly, for n = 10 reconstruction we obtain

u?i = 11u−55ui+165ui−330ui+462ui−462ui+330ui−165ui+55ui−11ui+ui (E.22)



Appendix F

Convective boundary layer

simulations

The evolution of the convective boundary layer (CBL) has been studied using LES for

the past 30 years (see e.g. Deardorff, 1970). Flows where surface heating is important

are generally easier to simulate using LES because the eddy motions are larger and

easier to resolve. However, much is still unknown about the evolution of the CBL

in more realistic scenarios, for example with wind shear and entrainment at the top

of the CBL. Conzemius & Fedorovich (2002) investigated the effect of wind shear by

performing three idealized sets of simulations. We have performed similar simulations

with ARPS as part of a comparison exercise organized by Conzemius and Fedorovich

(University of Oklahoma) (Fedorovich et al., 2004). Here we summarize the setup

of the numerical simulations and present a description of the resulting flows. As

our emphasis is on the performance of different turbulence models, we then focus on

comparisons to similarity theory for the case with constant shear.

Three different flow conditions are used. In the shear-free case (NS), the geostrophic

wind velocity is zero, and convection dominates completely. The second case consid-

ers geostrophic wind with shear (GS), such that the wind increases linearly from 0

at the surface to 20 m/s at the top of the domain. The last case uses a constant

geostrophic (GC) wind of 20 m/s to drive the flow. The flow is thus driven by the

constant geostrophic pressure gradient which would balance a geostrophic wind of

(Ug, Vg); in all cases Vg = 0. The initial flow is given by the specified geostrophic

winds, and then evolves due to drag at the surface and convective motions. The
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background stratification is set to 0.003 K/m uniformly over the domain. The CBL

grows due to a surface heat flux set constant at 0.1 K m/s. Perturbations (2 K) in

the initial potential temperature field at the surface trigger instabilities in the flow

so that it becomes fully turbulent.

The grid size is 256× 256× 103 with grid spacings of 40 m in the horizontal. In

ARPS this corresponds to a square domain, ∆x(nx − 3) = 10240 m on a side. A

stretched vertical grid is used, with 10 m spacing near the bottom, expanding to 30

m near the top of the domain; the average spacing is 20 m and the domain height

is 2000 m. ARPS is run for approximately 12000 s, until the CBL depth reaches

about 60% of the domain depth (1600 m). The latitude is 40◦ N. Fourth-order spatial

differencing is used for the advection terms. Temporal discretization is performed

using a mode-splitting technique to accommodate high-frequency acoustic waves; the

large time steps (0.5 s) use the leapfrog method, while first-order forward-backward

explicit time stepping is used for the small time steps (0.05 s), except for terms

responsible for vertical acoustic propagation, which are treated implicitly.

ARPS parameterizes momentum fluxes at the surface by applying an instanta-

neous logarithmic drag law (used here with constant drag coefficients) at each grid

point. The bottom roughness is set to 0.01 m and the drag coefficient is derived by

applying the logarithmic velocity condition to the first grid cell above the wall (at

height ∆zmin/2). Rayleigh damping is used above 1400 m to minimize reflections

from the rigid lid boundary at the top of the domain. At the lateral boundaries,

periodic conditions are used for this idealized flat-terrain study.

This is a time-dependent flow, therefore no time averaging is performed. Statis-

tics are output as horizontally-averaged profiles every 200 s. Convenient comparison

measures for the GC case are the nondimensional velocity shear

ΦM =
κz

u∗

dU

dz
(F.1)

and the nondimensional potential temperature gradient

ΦS =
κz

θ∗

dθ

dz
(F.2)

where θ∗ = −q∗/u∗ and q∗ is the heat flux at the ground. Similarity theory for the
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convective boundary layer gives the theoretical values as

ΦM = (1− 15z/Lobu)
−0.25 (F.3)

ΦS = 0.74(1− 9z/Lobu)
−0.5 , (F.4)

where the Obukhov length is defined Lobu = −u3∗ < θ > /(κgq∗). When the atmo-

sphere is neutrally stratified, Lobu →∞ and ΦM = 1 (as seen in the neutral boundary

layer simulations in Chapter 6) (Stull, 1988, p. 385).

These expressions for ΦM and ΦS can be integrated to obtain the profiles expected

from similarity theory:

U =
u∗
κ
(log(z/z0) + ΨM) (F.5)

θ − θ0 = 0.74
θ∗
κ
(log(z/z0) + ΨS) (F.6)

where θ0 is a reference temperature at the surface,

ΨM = −2 log((1 + χ)/2)− log((1 + χ2)/2) + 2 tan−1(χ)− π/2.0 (F.7)

ΨS = −2 log((1 + ξ)/2) (F.8)

and

χ = (1− 15z/Lobu)
0.25 (F.9)

ξ = (1− 9z/Lobu)
0.5 (F.10)

(see (Stull, 1988, p. 385) and (Garratt, 1992, p. 53-54)).

Figures F.1 and F.2 show the mean velocity U and potential temperature profiles

at 10000 s obtained from GC simulations using four different turbulence models:

the standard TKE-1.5 closure, the DWL, and the DRM-ADM0 and DRM-ADM5.

The differences are apparent even in the mean profiles. The normalized profiles in

Fig. F.2 show that the TKE-1.5 results are closer in magnitude to the similarity

theory prediction, but the slopes of these profiles are also important. Figure F.3
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shows the nondimensional velocity and potential temperature gradients compared to

the expected value from similarity theory. Near the wall, the TKE model results

overpredict ΦM and underpredict ΦS. Results using the DRM are better, especially

near the wall where the slope of the profiles matches the theory more closely, though

not as much for ΦS. The DWL and DRM results exhibit small oscillations; the plots

show vertically filtered data to remove 2∆x waves. Further research is needed to

investigate the near-wall performance of the DRM in the CBL and the influence of

the near-wall stress model.

Comparisons of resolved and subgrid heat fluxes are shown in Fig. F.4. Although

these profiles are not time-averaged, it is easy to see that the results using recon-

struction give increased SFS stresses, and consequently lower resolved stresses. This

pattern was also observed in the neutral boundary layer simulations of Chapter 6 and

in the small-scale channel flow simulations of Chapter 5.
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Figure F.1: Horizontally averaged velocity (top) and potential temperature (bottom)
profiles at 10000 s.
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Appendix G

Computational cost

The CPU and memory requirements for the Riviera Valley simulations using ARPS

are presented here. These calculations were performed as part of a proposal for

computation time at NCAR’s Scientific Computing Division. Based on a sample

simulation, the total CPU time per timestep per grid point is calculated to be ap-

proximately 2× 10−5 s. We then multiply by the total grid points for a new grid and

the total number of timesteps for a 30 hour simulation period to obtain a total CPU

time. Estimated values for a complete set of runs are shown in Table G.1.

A rough estimate of the memory used by ARPS is given by nx*ny*nz*284. Ac-

cordingly, for a 99x99x50 grid, we require about 140 MB of memory. For a fine grid

of 160x160x160, this is about 140MB per processor if 8 processors are used. It is

expected that this estimate will vary when different model components are used (e.g.

radiation and moisture model components). A few examples are given below.

The ARPS code has been fine-tuned by the research team at the University of

Oklahoma for maximum vectorization and parallelization. For example, all expensive

power and exponential functions use lookup tables. In addition, we use the MASS li-

brary (Mathematical Acceleration Subsystem), available on bluesky to further speed

up the code by about 3-5%.

The MPI version of the ARPS code has been tested on various machine architec-

tures, and has good scalability. For example, on a single 250 MHz R12000 processor

on an NCSA Origin 2000, ARPS performed at 110 megaflops for a 19x19x53 grid

size. Using 256 processors on the Origin 2000, ARPS sustained rates of 22 gigaflops,

giving a scalability rating of 73%. Simulations of flow over complex terrain similar to
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Run ∆t/∆τ(s) Grid size NP Wall clock Node res. CPU hrs
riv9km 10/10 (103,103,53) 16 6 220 s 99 520 s 26.8
riv3km 2/4 (103,103,53) 16 26 325 s 421 200 s 116.0
riv1km 1/1 (99,99,63) 32 71 760 s 1 148 160 s 312.4
riv350m 1/0.2 (83,83,63) 16 59 010 s 944 160 s 259.3
*riv150m 1/0.1 (83,83,83) 32 38 872 s 1 243 900 s 345.5
*riv50m 0.5/0.05 (163,163,123) 64 222 170 s 14 219 000 s 3949.6

Table G.1: List of simulations and computational cost. * indicates estimated costs.
Assume 8 processors/node. Node reserved time is wall-clock time multiplied by the
number of processors (NP) and is roughly equivalent to CPU hours.

ours have also been performed with ARPS on the IBM Power 3 seaborg at NERSC.

Using a grid of (243,243,80), the code achieved 11.8 Gflops for 64 processors or 185

Mflops/processor. The memory requirement was a total of 3.8 GB, or 61 MB per

processor. These are significantly faster computations than previously achieved with

ARPS, due in large part to the power of the IBM SP machine.

On bluesky, a 350 m resolution run for the Riviera valley with (83,83,63) grid

points runs well on 16 processors. The performance of the bluesky simulations

was measured using the IBM HPM utilities which gave about 11.5 Gflops or 359

Mflops/processor, and a memory use of 1.4 GB, or 44 MB/processor. Further data

on the performance of ARPS are given at

ftp://ftp.caps.ou.edu/pub/ARPS/ARPS.docs/ARPS4DOC.PDF/arpsch11.pdf.
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